
Physics 200-04
Complex numbers

Complex Numbers
One of the themes throughout the history of mathematics was the expan-

sion of what one regarded as numbers. Mathematics began with counting–
the positive integers. It was gradually realised that the process of subtraction
could be unified with that of addition by the invention of negative integers
as well as the special number 0. (It actually took a long time for zero to be
discovered).

Then, the idea of fractions– divisions of objects and thus of numbers into
equal pieces. In particular, fractions, the rational numbers, were the solutions
of the simplest of linear equations with integer coeficients. Eg, 3x − 7 = 0.
We note that we create an equation using just integers, and the solution
requires something other than integers.

One could limit oneself to finding only integer solutions (in general pos-
sible even for linear equations only if the equations underdetermine the
solutions-eg, Diophthantene solutions), or try to expand one’s notion of num-
bers to encompase a class which would be a solution to equations like that.
Chosing the latter road, one came up with the concept of the rational num-
bers (integers divided by integers).

The next discovery, that of the irrationals, came as a huge shock to the
philosophers. The proof that the solution to the equation x2 = 2 could
not be expressed as any rational number caused no end of trouble, From
< http : //www.peacelink.de/keyword/Irrational number.php >

”The discovery of irrational numbers is usually attributed to Pythagoras
or one of his followers, who produced a (most likely geometrical) proof of
the irrationality of the square root of 2. One story is that one of his follow-
ers called Hippasus discovered irrational numbers when trying to represent
square root of 2 as a fraction. However Pythagoras believed in the absolute-
ness of numbers, and could not accept the existence of irrational numbers.
He could not disprove their existence through logic, but his beliefs would not
accept the existence of irrational numbers and so he sentenced Hippasus to
death by drowning.”

Mathematics was a serious subject in those days!
Again one could accept that such numbers simply did not exist (but that

would be embarassing since the hypoteneuse of a right triangle with two sides
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equal to one is given by that value, and outlawing such numbers would mean
that the hypoteneuse has no length) or again extend the notion of what a
number is to include the irrationals. Going the second route, one could now
solve may equations in terms of the rational and irrational numbers.

However there were still equations which could not be solved. The sim-
plest of these is

x2 + 1 = 0 (1)

Just as x2 = 2 has no solutions in the rationals it is easy to see that x2+1 = 0
has no solution for any real number (rational or irrational) x since all squares
of rationals and irrationals are positive numbers.

It turned out that one could again extend one’s definition of what one
meant by a number by simply defining a solution to this equation and giving
this solution a name. In the case of the

√
2 in some sense the extention to

irrationals was not very far. While there is no rational which is exactly equal
to this number, one can find rationals whose square is arbitrarily close to√

2. However there is no number, rational or irrational whose square is at all
near −1.

We will thus simply augment our idea of number by adding this number,
the solution of x2 = −1 to what we think of as a number. This number is
traditionally called i although in the engineering literature it is often called
j.

Given this one new number, we can now extend our idea of numbers by
multiplying this number– so that say 7i will be the number whose square is
−49. We can moreover imagine also adding such numbers together– to get
something say like 23 + 2i. Of course at present this is just a formal sum.
It is not clear what it means. But we can extend it by giving such numbers
more properties.

Complex rules:
A complex number is an object which is written in the form a+ ib where

bi means b multiplied by i– ie the number whose square is −b2. We give it a
number of properties.

0) Equality. If a+ ib and c+ id are two complex numbers, then these two
numbers are equal only if a = c and b = d. Both must be true for the two to
be equal.

i) Addition. If a+ ib and c+ id are two complex numbers, where a, b, c, d
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are all real numbers, then

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) (2)

It is clear from this definition of addition that (a+ ib) + (c+ id) = (c+ id) +
(a+ ib). Ie the order of addition does not matter.

ii) Multiplication: We can define multiplication by treating i as if it is
some algebraic variable. Thus

(a+ ib)(c+ id) = ac+ iad+ ibc+ (i2bd) = (ac− bd) + i(ad+ bc) (3)

where we have in addition used i2 = −1. Ie, multiplication proceeds just as
if i were some variable x, except that whenever you see an i2 you can replace
it with −1.

iii) Division: (a + ib)/(c + id) is the complex number which, when mul-
tiplied by c + id is equal to a + ib. Amazingly not only is there an answer,
there is a unique answer. We start by noting that the simplest division
(c− id)/(c− id) = 1. Thus we can multiply (a+ ib)/(c+ id) by this expres-
sion for unity ( and by the multiplication law, this is the same as the original
number). Now, we also assume that

((a+ ib/c+ id))((e+ if)/(g + ih)) = ((a+ ib)(e+ if))/((c+ id)(g + ih)) (4)

This leads to

((a+ ib)/(c+ id)) = ((a+ ib)/(c+ id))((c− id)/(c− id))
= ((a+ ib)(c− id))/((c+ id)(c− id))
= ((a+ ib)(c− id))/(c2 + d2)
= ((ac+ bd)/(c2 + d2)) + i((bc− ad)/(c2 + d2)) (5)

Ie we can explicitly define division of complex numbers by numbers. complex
multiplication and division by real numbers.

iv) Complex Conjugation: As in the above it is often useful to define
another complex number related to some number c+ id by simply reversing
the sign of the i. This is called a complex conjugate of the original number.
It is designated by a superscript star.

(c+ id)∗ = (c− id) (6)
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where c and d are real numbers. If x say is supposed to represent a complex
number, then one writes x∗ without being able to evaluate it. Note that

(c+ id)(c+ id)∗ = c2 + d2 (7)

is a real positive number. It is called the square of the modulus of the complex
number c+ id. This is often written as

|c+ id|2 = (c+ id)(c+ id)∗ = c2 + d2 (8)

or

|c+ id| =
√
c2 + d2 (9)

where one always takes the positive square root.
An astonishing feature of complex numbers is that they complete the

chain of finding solutions to equations. In each of the previous cases one
could find equations expressed purely in terms of one class of numbers such
that those equations had no solutions in terms of that kind of number. Now
however, any polynomial with complex coefficients always has solutions which
are complex numbers. One does not have to invent some new kind of num-
bers. The complex numbers complete the kinds of numbers one needs to
handle equations.

The complex numbers have all of the features of the rationals and reals
as well. Ie, one has addition, subtraction, multiplication, division, an idea of
both 0 and 1. (There exist other types of numbers, quaternions and octonians
which share with complex, real and rational numbers these features, but they
have found very very little application).

examples

(7− 5i)(6 + i) = 42 + 7i− 30i− 5i2 = 42 + 5− 23i = 45− 23i
(2.113− .0776i)∗ = (2.113 + .0776i)
(3 + 4i)/(2 + 5i) = (3 + 4i)(2− 5i)/((2 + 5i)(2− 5i))

= (26− 7i)/29 = (26/29)− (7/29)i (10)

Complex Matrices
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Just as we have dealt with matricees all of whose elements are real num-
bers we can deal with matrices whose elements are all complex numbers
instead. The law of multiplication of these is exactly the same as the multipli-
cation of matrices with real coeficients, as far as the elements are concerned.
Thus
(

1 + i 2 + 3i
0 −2 + i

) (
1 + i 1 + i
2 + 2i 4

)

=
(

(1 + i)2 + (2 + 3i)(2 + 2i) (1 + i)(1 + i) + (2 + 3i)(4)
0(1 + i) + (−2 + i)(2 + i) 0(1 + i) + (−2 + i)4

)

=
(−2 + 12i 8 + 14i

−5 −8 + 4i

)
(11)

Ie, although complex matrices are more complex than real ones, they are
no more complicated.

There are two more ideas which are important for complex matrices. The
first is complex conjugation. If A is a complex matrix, the the matrix A∗

is defined to be the matrix formed by taking the complex conjugate of each
element of A. Thus

(−2 + 12i 8 + 14i
−2 + i −8 + 4i

)∗
=
(−2− 12i 8− 14i
−2− i −8− 4i

)
(12)

The transpose is the same as for ordinary matrices but is not used that
often. Instead there is another operations, called the Dirac adjoint, and is
symbolised by a dagger.

A† = (A∗)T (13)

It is the matrix obtained by first taking the complex conjugation of the
matrix, and then taking the transpose. Thus

(−2 + 12i 8 + 14i
−2 + i −8 + 4i

)†
=
(−2− 12i −2− i

8− 14i −8− 4i

)
(14)

A Hermitean matrix is one whose Dirac adjoint is the matrix itself.

H† = H (15)

This must mean that all elements along the diagonal must be real, while
across the diagonal the elements must be complex conjugates of each other.
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It will turn out that Hermitean matrices play a crucial role in quantum
mechanics.

Eigenvalues and Eigenvectors
If A is a square (nxn) complex matrix, then the column matrix V (nx1)–

usually called a vector with one column and n rows is called an eigenvector
(eigen means ”itself” in German) if the product of A with the vector V – ie
AV – which is again an nx1 matrix– is a multiple of V . Ie, V is an eigenvector
of A if and only if V obeys

AV = λV (16)

for some complex number λ. The Vector V which obeys this equation is
called an eigenvector of A while the number λ is called the eigenvalue of this
eigenvector.

For example, consider the matrix

A =
(

1− i 2 + 3i
0 −2 + i

)
(17)

An eigenvector of this matrix is

V1 =
(

1
0

)
(18)

since

AV1 =
(

1− i 2 + 3i
0 −2 + i

)(
1
0

)
=
(

1− i
0

)
= (1− i)

(
1
0

)
(19)

(Recall that when you multiply a matrix by a constant, you multiply every
element of the matrix by that constant). The eigenvalue associated with this
eigenvector is λ1 = 1− i.

Similarly, the vector

V2 =
(

2 + 3i
−3 + 2i

)
(20)

is another eigenvector of this matrix with eigenvalue λ2 = −2 + i.
(In this particular case the eigenvalues are also just the elements of the

diagonal of the matrix, but this is NOT true in general)
The Hermitean matrices are important in quantum mechanics because the

eigenvalues are always real numbers, not complex numbers. (I will denstrate
this later in the course.)
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