
Physis 200-04Dynamis Con't.Let is look at an example of both the Heisenberg and Shr�odinger solutionto a problem, that of the behaviour of an eletron spin in a magneti �eld.The eletron spin is related to the Pauli spin matries bySx = �h2~sx � ~�Sy = �h2~sy � ~�Sz = �h2~sz � ~� (1)where the three vetors ~sx; ~sy; ~sz are hoosen initially so thatSx(0) = �h2�1Sy(0) = �h2�2Sz(0) = �h2�3 (2)Now, we know lassially that a spinning harge has a magneti moment aswell given by �x = g emSx and similarly for the y and z omponents of themagneti moment. Here e is the harge and m is the mass of the partile,and g is a fator whih measures how the harge in the spinning objet isdistributed with respet to how the mass is distributed. A g greater thanone means lassially that the harge is distributed further from the spin axisthan is the mass. The g-fator for the eletron is very lose to 2. There is aninteration of any magneti moment with a magneti �eld that has the form�xBx+�yBy�zBz where B is the external magneti �eld. Ie, this interationenergy is trying to align the magneti dipole with the �eld.Let us assume that the external �eld is in the z diretion, so that onlyBz is non-zero. This expression for the energy of a lassial spinning systemis then H = g emSz = g e2m�hBz ~Sz � ~� (3)The equations of motion for the three omponents of the spin are nowi�hdSxdt = [Sx; H℄ (4)1



and similarly for Sy and Sz. The easiest equation to solve is that for Sz sineH is proportional to Sz. Sine any matrix always ommutes with itself, wehave that dSzdt = 0 (5)and Sz will be equal to �h�3=2 for all time.The equation of motion for Sx and Sy will bei�hdSxdt = ge�hBz2m [Sx; �3℄ (6)and similarly for Sy. Writing these in terms of the 1,2,3 omponents, we havei�hd~sxdt = ge�hBzm i~sx � ~e3 (7)where ~e3 has only its 3 omponent equal to 1 and the other two 0. Thus wehave dsx1dt = ge�hBzm sx2dsx2dt = �ge�hBzm sx1dsx3dt = 0 (8)Thus sx3 whih starts out as 0 remains zero. The solution for the other twoomponents whih obeys the initial ondition that sx1(0) = 1 and sx2(0) = 0is sx1 = os(!t)sx2 = �sin(!t)sx3 = 0 (9)where ! = �����ge�hBzm ����� (10)Similarly solving the equations for Sy givessy2 = os(!t)2



sy1 = sin(!t)sy3 = 0 (11)The Spin omponents thus areSx = �h2 � 0 (os(!t) + i sin(!t))(os(!t)� i sin(!t)) 0 �Sy = �h2 � 0 (�i os(!t) + sin(!t))(i os(!t) + sin(!t)) 0 � (12)The expetation value { the average value of the measured omponentsof the spin omponents are given by h jSwj i, where j i is the state.Onehas many options for the state. However, let us say that the state isj i = 15 � 34� (13)(note this is purely an example{ this state has no speial signi�ane)Then we haveh jSx(t)j i = �h50 ( 3 4 )� 0 (os(!t) + i sin(!t))(os(!t)� i sin(!t)) 0 �� 34�= �h50 �12ei!t + 12ei!t� = 2450 os(!t) (14)Similarly we �nd that h jSy(t)j i = 2450�h sin(!t) (15)and h jSz(t)j i = 750�h (16)Ie, the average vetor moves so that its z omponent stays onstant, whileits x and y omponents rotate about the z axis with frequeny !.Note that this is exatly the same as the motion of a spinning top lassi-ally. Ie, the equations of motion of the expetation value of the omponentsis the same as lassial equations of motion.This is a generi feature of quantum systems. The expetation values tendto obey equations that are very similar to the lassial equations of motion3



of the system. Note that if we do suessive measurements on a system wewill not see this kind of motion. Instead we will see random jumping around.However if we make measurements on a huge number of partiles, all startingin the same initial state and then average over the measured values, we dotend to get something that looks lassial.Classial physis seems to be something whih is an approximation to thequantum physis if we only look at averages.Shr�odinger.Let us look at the same problem from the Shr�odinger point of view. Herethe operators orresponding to the physial attributes (ie the spin ompo-nents) do not hange in time. Instead it is the state j i whih hanges intime. In partiular we have i�hdj idt = Hj i (17)Just as above H = geBz�h2m �z (18)Thus we have writing j i = � 1 2 � (19)we have  i�hd 1dti�hd 2dt ! = !2 �h�  1� 2 � (20)Thus  1 =  1(0)e�i!t=2 2 =  2(0)ei!t=2 (21)Note that this expression is not terribly transparent. In our example  1(0) =3 and  2(0) = 4We note that in many ways, solving the Shr�odinger equation is muhsimpler than solving the Heisenberg equation. For one thing we do not have4



to solve for our three separate matries, just the one olumn vetor j i. Thisis true in general. The Heisenberg representation is almost never used toatually solve problems. The Shr�odinger representation is almost alwaysused. This does not mean that the Heisenberg is not important{ it is veryimportant theoretially.Just to give a very very very brief taste of the quantum mehanis of say asingle partile moving in the x diretion. The usual attribute is the positionmatrix X, together with the momentum P . As hinted, these two operatorsare related by [X;P ℄ = i�hI (22)We an write a general ket vetor in terms of the amplitudes in the x basis{ie in terms of the eigenvalues of the X matrix, whih we will all jxi. Thus,a general state is j i = Z hxjj ijxidx (23)where we have replaed the sum over the eigenvetors by this integral. Yes,I know I said that the eigenvetors of X do not really exist, but let us ignorethis for now.We will de�ne the  (x) = hxjj i as the amplitudes for the state j i tohave eigenvalue x. The probability to have the value x between x1 and x2 isgiven by R x2x1 j (x)j2dx.Now we have to �gure out what P is. P is supposed to be a matrix suhthat XP � PX = i�hI. Let me not prove it but just state thatP Z  (x)jxi = Z �i�h� (x)�x jxidx (24)Sine P This de�nition of P ating on any vetor expanded out in terms ofthe X eigenvetors ertainly obeys the required ommutation relations.From lassial physis, we know that the energy of the harmoni osillatorfor example is H = 12(P 2m + kX2 (25)5



. We an use exatly this same expression for the Quantum harmoni osil-lator.Just plugging in for what X abd P are we �ndHj i = Z  � �h22m �2 (x)�x2 + k2x2 (x)! jxidx (26)and the eigenvalue equation for H, namely Hj Ei = Ej Ei beomesint � �h22m �2 E(x)�x + k2x2 E(x)� E E(x)! jxidx = 0 (27)In order that the left hand side be a zero ket vetor, eah oeÆient ofthe jxi must be zero. Thus one �nally �nds the di�erential equation� �h22m �2 E(x)�x + k2x2 E(x)� E E(x) = 0 (28)If we solve this equation, we �nd that this energy is NOT ontinuous. Itomes in disrete lumps, as E = (n + 12)�h! (29)where ! = q km the lassial angular frequeny of the osillator. This disreteenergy is NOT fed in from the beginning. Instead it is derived from thede�nition of P and X and the energy as de�ned in terms of these quantities.Note that there is no lassial physis here, exept maybe in de�ning theenergy in terms of P and X. There is no imposing some funny quantizationonditions onto the lassial solutions (R p _qdt = nh). One simply de�nes thedynami variables X and P , demands the ommunation relation betweenthem, writes down the Hamiltonian and derives the fat that the energyomes in disrete lumps.Furthermore, if one looks at the Heisenberg equations of motion, P andX obey exatly the same equation in this quantum system as the lassialequations do. 6


