
Physis 200-04Periodi TableOne of the suesses of the old quantum theory was an explanation of theperiodi table.Bohr, in his original deriviation of the energy levels of the H atom usedjust the irular orbits in deriving the energy levelsE = mZ2e48�20h2 1n2 (1)but it was lear that the lassial system had more degrees of freedom thanthat. In partiular the lassial system ould have a variety of angular mo-menta for eah energy. The eletron ould irle the entral atom in irularand in ellipti orbits. (Just as with the planets, the eletron would irle theentral nuleus with the nuleus at one of the foi of the ellipse.) Sommer-feld thus postulated that there was a separate quantization ondition for eahdegree of freedom, whih he took to be the radial motion and the angularmotion.Thus we an write the three onditions asn1h = Z pr _rdtn2h = Z p�r _�dtn3h = Z p�r sin(�) _�dt (2)where pr, p�, and p� are the omponents of the ordinary momentumm~v in thediretions r; �; �. The terms _r, r _�, and r sin(�) _� the veloity of the partilein those diretions.( The dot over an expression means the time derivative ofthat expression).Now, Z p�r _� + p�r sin(�) _�dt = Z mv2� +mv2�dt: (3)But the term on the right hand side is invariant under a rotation of the wholesystem. Thus, in order to �nd the energy, we an always rotate the wholesystem, so that the orbit lies entirely in the x-y plane, and suh that _~� iszero. 1



Ie, we an solve the equations for the orbit in the x-y plane, and thenafterwards rotate bak into the frame in whih the orbit is inlined to thex-y plane.For an orbit in the x-y plane only we then have the single quantizationondition (n2 + n3)h = Z p�r _~�dt (4)where ~� is the angle � in the new rotated oordinates.We an thus assume that we are looking at the orbit lying in the x-y plane.We an now write two quantization onditions{ one refering to motion in theangular diretion, and one in the radial diretion.n1h = Z pr _rdt(n2 + n3)h = Z p~�r _~�dt (5)In this ase n1 an go from 0 (if the orbit is irular, and there is no radialmotion). However n2+n3 an only go from 1, sine it makes no sense to thinkabout an orbit with zero angular momentum{ it would go right through theentral nuleus.There exists a so alled Virial theorem for any power law entral potential.The simplest way to see this is to write Newton's law seond law asmd2~rdt2 = �~rV (r) (6)where ~r is the gradient of the entral fore potential whih depends only onthe distane r from the enter. Take the dot produt of both sides with ~rand average over an orbit, remembering that~rV (r) = dV (r)dr ~rr (7)(ie the fore only has a omponent in the r diretion) Thus we haveZ md2~rdt2 � ~rdt = � Z dV (r)dr ~rr � ~rdt (8)2



Now, d2~rdt2 � ~r = ddt  d~rdt � ~r!� d~rdt � d~rdt (9)and thus the left hand side beomesd~rdt � ~rjT0 � Z T0 mv2dt = � Z rdV (r)dr dt (10)If we take T to be one period, then the �rst term is zero sine in the periodiorbit all the terms repeat themselves after time T . Thus the average value oftwie the kineti energy equals the average value of r dVdr . If V is a power lawpotential, V = Ar� then r dVdr = �V (r). Thus for any power law potentialthe average kineti energy is �2 times the average potential energy. For theharge or the gravitational ase, � = �1, so the average potential energy isminus twie the kineti energy. Ie, the total energy (potential plus kinetienergy) is the average of minus the kineti energy.The total energy is E = KE + PE (11)so for the Coulomb problem,E = KE + PE = KE � 2KE = �KE = �12(m _r2 +mr2 _�2) = �12(pr _r + p� _�)(12)Integrating over one period, we haveET = 12(n1 + n2 + n3)h (13)where T is one period, sine the terms on the right are just the sum of thetwo ations.We now need to �gure out what T is in terms of the properties of theorbit. It turns out that T depends only on the energyE.To �nd T takes a bit more work. The angular momentum r2 d~�dt is justtwie the rate of hange of the area of the orbit times the mass. (see �g 1).(The area of the small triangle is 12base x height = 12r d�dt Æt r This means thatthe area of the ellipse , whih is �ab4 where a is the length of the major axis3



and b is the minor axis, is twie the integral of the angular momentum overthe period. However the equation of motion of the partile so thatddt(r2d~�dt = 0 (14)Sine the angular momentum is onserved, it is the same over time, so wehave p�T = m�ab2 (15)

Figure 1: The de�nition of various quantities for an ellipse. The nuleus ofthe atom is assumed to be at the left fous of the ellipse.Finally, we an use the fat that the nuleus is at the fous of the ellipse,and we an use that, at the losest approah and furthest approah to the4



enter, the radial veloity is zero. Sine the angular momentum ismr2 _� = p�,we have that _� = p�r2 . At the losest approah to the sun, we haveE = 12(p� _� � Ze24��0r= 12 p2�mr2 � Ze24��0r (16)Solving this equation for the two values of r (losest and most distant ap-proah), r1 and r2, and adding them to get the semi-major axis, we havea = Ze24��0E (17)or E = Ze24��0a (18)Ie, the total energy depends only on a the major axis of the ellipse.Finally using the fat that for an ellipse, the length of the string fromone fous to the ellipse and then to the other fous is always onstant, andis thus equal to a, we �nd that the di�erene between the two solutions forr, whih is just the distane between the two foi, is equal to pa2 + b2.r1� r2 = vuut Ze24�0E!2 + 4 p2�2m2E (19)from whih we immediately read o� thatb = p�mqE=2 (20)Thus T = �abp� = � Ze24��0E 1qE=2 (21)and ET = Ze24�0qE=2 = (n1 + n2 + n3)h (22)5



Thus the energy depends only on n = n1+n2+n3 and this is the n in Bohr'sformula. Usually n2 + n3 is alled l + 1 so that l goes from 0 to n-1.Sine the major axis is the same for a given n, for large n but low l, theradial quantum number n1 is large. whih means that the orbit has a largehange in r during the orbit. Ie, the orbit is elliptial and the eletron spendsmore time near the entral harge. Beause the entral harge is sreenedby the other eletrons when the eletron under onsideration is far away, theenergy of the high l states for a given n is higher than for low l. (the greaterpositive harge seen by the eletron whih omes nearer the nuleus binds itmore tightly making the energy lower.)It was found experimentally by putting the atom into a magneti �eld(Zeeman e�et) that eah of the states with quanum number l had 2(2l+1)substates. This ould be understood if we assume that n3 has values from 0to n2 � 1 = l only, and that for eah value exept n3 = 0, the eletron ouldorbit in two diretions{ lokwise or ounterlokwise as seen from above.Ie, for eah non-zero value there were 2 states and for zero only 1. However,there seemed to be two extra states for eah of the above values. of n1, n2and m = �n3This \explains" the periodi table. Using the Pauli exlusion priniple,one would expet to �ll the lower n befor higher, and the lower l before thehigher. Thus, �rst n=1 l=0, then n=2 l=0, then n=2 l=1, then n=3 l=0,n=3 l=1. However, beause of their plunging loser to the nuleus the n=3l=2 have a higher energy than the n=4 l=0 and n=4 l=1. Thus the orderessentially is n l1 02 02 13 03 14 04 13 2 (23)5 04 26



5 16 04 35 26 17 15 36 27 2Atually one of the l=2 eletrons sneaks in befor the l=3 shell �lls up for thehigher n states.Suddenly one ould see reason in the periodi table{ reasons why variousof the elements had suh similar hemial properties. (eg, C and Si are verysimilar, and this is beause they our at the same �lling of an l=2 shell,only in one ase with n=2 and the other with n=3.)In the periodi table aompanying this, the small numbers under theelement name refer to the priniple quantum number (the �rst number) thel quantum number (with s meaning l=0, p meaning l=1, d meaning l=2and f meaning l=3. These have historial signi�ane s=sharp, p=priniple,d=di�use)
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