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I. MAGNETIC FIELD FREE GAUGE

Consider a region of space which is free of magnetic fields but contains a non-zero vector potential field. An example
of this is the region outside an infinite solenoid with an axial current running through the walls of the solenoid. (
anotehr eample would be a cylindrical magnet the ends of the magnet being connected to each other by a massive
piece of mu-metal which conducts the field from one end to the other without ”any” (well very small) magnetic field
in the space around the magnet.
For an infinite solenoid the magnetic field inside is determined by the current running thorught walls, while the

field outside is zero. A possible vector potential will be a vector potential which runs in circles perpendicular to the
solenoid.
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where r2 = x2 + y2. The curl of ~A is 0 for r > R and equals Bz = B0 for r < R.
Now take a point outside r = R, and connect this to another point outside r > R and choose two arbitrary paths

from the first point to the second point, such that one can deform one of the paths to the other without ever entering
the region r < R. Ie, both paths run through the region r > R and the inside of that path (the surface obtained in
your deformation of the one path to the other).call these paths P1 and P2. Call the inverse of these paths (ie running
from the second point to the first) −P1 and −P2. Then Stoke’s thm tells us that
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is a closed path, and thus the integral around the closed path equal the surface integral of ǫijk∂jAknkd
2x equal the

above closed integral. Sine B = 0 everywhere on this surface, both intgrals
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Defining Ψ(pf) =
∫
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i which is the independent of the path we choose to get from the first point to second
where pf is the final point.
Then

Ãi = Ai − ∂iΨ(pf(xi)) = 0. (6)

The change from Ai to Ãi is a guage transformation. Ie, we can always find a gauge transformation whith goes
from Ai to 0.
However, there is another gauge transformation. Instead of going from the first point to the second, one chooses

another path goes around the other side of the solenoid. as the first path above, such that the deforming the this
path to the first path cuts through the region r < R once. Lets call this P3. Then the integral
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There of course still exist an infinite number of paths whose surface does not go through r < R, and they can be used

to define another gauge transformation Ψ̂ which again set
˜̂
iA = 0. But on points where both Ψ and Ψ̂ are defined,
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they differ by B0πR
2. Ie, although in both cases the gauge transformed A is zero, the gauge transfomation itself is

multivalued. One could find other gauge transfomation where for any integer N , positive or negative, we would have

˜ˆ (x)Ψ− Ψ̃ = NB0πR2 (8)

II. AB EFFECT

Now consider a complex valued null scalar field where I have chosen units of the magnetic field such that µ0 = ǫ0 =
c = 1.

∂2t φ−∇
2φ = 0. (9)

We can give this field a charge, and minimally couple this field to the electromagnetic field buy the process

(∂t + iqΦ)(∂r − iqΦ)φ− (∇j − eAj))(∇
j
−Aj)φ = 0. (10)

where Φ is the electric potential and Ai is the magnetic potential. q is a constant of nature which converts the units
of Φ and Ai to units of inverse time and space (since c = 1 time and space have the same units). That this consant q
in the world we live in has units of C/~ where C is the units of charge and ~ is Planks constant does not mean that
there is anything quantum mechanical about this field ψ. It is a classical field. In out system we have no electric field,
and thus have no potential Φ. The field Ai is taken to be time independent.

The charge density corresponding to thie field is

ρ = Im(iqφ∗∂t + iqΦφ)) (11)

J i = Im(iqφ∗(∂i − iqAi)φ) (12)

Now let us assume that the field Ai is a continuous single valued field, such as the field that we looked at at the
beginning of this note. We will assume that the solution of the equations of motion for φ is single valued. We now
carryout a gauge transformation on the field ψ such that ψ̃ = e+iΨψ (recall that Ψ is independent og time.) Then
the equations of motion become
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i
− iqÃi)φ
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since Ãi = 0. If we take a wide enough laser beam of frequency ω and split it using a beam splitter The solution
along a straight path will could be something like

φ = e−iω(t−~nλe
−s
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where for large σ it will change slowly with λ. ~n is the direction of travel of the beam, and lambda is the distance
along the path of the beam.
We now create the beam with a beamsplitter, bounce the two beams off mirrors so that they take different paths

around the beamsplitter, and then interfere them through a second beamsplitter. We take the common initial point of
the beam at the first beansplitter, and recombine the beams at the second beamsplitter. While in the first path 1-2-4,
we chose the Ψ as the gauge transformation to make the vector potential zero, for the second path 1-3-4 we choose Ψ̂
as the gauge transformation. Once we get to teh secon (4) beamsplitter the phase of teh solution in the original gauge
will be ω(λ4 − λ2 + λ2 − λ1) on the second path we will have ω(λ4 − λ3 + λ3 − λ1) +B0πR

2. The difference between
these two phases will determine in which direction the beam will exit the second beamsplitter. If the phase is 2nπ ,it
will exit one way, while if it is (2n+ 1)π, it will exit the other way. Thus if we leave the interferometer alone and we
change the amplitude of the magnetic field, we can tune the phase difference to whatever multiple of π we want.

We note that the beam always travels through a region where the B field is 0. The B field cannot directly affect the
charged beam. Furthermore the A field is gauge equivalent to 0 at each point along the path, so that again shoul not
effect the beam. And yet, as we change the B field inside the solenoid, the interference pattern at the beamsplitter 4
changes. Ie, sustem’s response depends on which gauge transformation we carry out. The gauge is physical, or rather
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FIG. 1: Figure AB-interf. AB interferometer

gauge invariant aspects of the gauge transformation are phyical, including the path intgral of the gauge around a
closed loop is physical.
This came as a shock to everyone, and many refused to believe it, until finally experiments were carried out which

demonstrated the effect.
It is important to note that while I used a field φ which obeyed a massless field equation, one could equally use a

field which had an addition term of the form m2φ, to make it a massless scalar field.
If one quantizes the field, the factor q~ will be the charge of the ”particles” associated with this field. But again

the AB effect is a classical effect, which can be quantized.
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