Physics 530-23

Assignment 1

1. Assume that $H^{i}{ }_{j}, L_{i}{ }^{j}{ }_{k}$ and $M_{i j}$ are tensors, and f, g are functions. Which of the following are tensor equations and why? (Recall that a tensor equation is on for which both sides of the equation transform in the same way under a coordinate transformation).
i) $Q_{i}{ }^{j}=H^{j}{ }_{i}$
ii) $R=H^{i}{ }_{i}$
iii) $T_{i j k}^{l}=H^{l}{ }_{i} M_{j k}$
iv) $T_{i j k}^{l}=H^{l}{ }_{i}+M_{j k}$
v) $R^{i}=L_{j}{ }^{i}{ }_{j}$
vi) $S_{i}=L_{i}{ }^{j}{ }_{j}-L_{j}{ }^{j}{ }_{i}$
2. Given coordinates r, θ, what are the tangent vectors to the curves defined by the coordinate conditions

$$
\begin{gather*}
r(\lambda)=r_{0} \tag{1}\\
\theta(\lambda)=\lambda \tag{2}\\
r(\lambda)=\lambda \tag{3}\\
\theta(\lambda)=5 \lambda \tag{4}\\
r(\lambda)=10 \lambda \tag{5}\\
\theta(\lambda)=50 \lambda \tag{6}
\end{gather*}
$$

What is the cotangent vector of the following functions

$$
\begin{equation*}
f(r, \theta)=r^{2} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
f(r, \theta)=r^{2}+\theta^{2} \tag{8}
\end{equation*}
$$

In each case find the lengths of these various vectors for each point at which they are defined if the metric is given by a)

$$
\begin{equation*}
d s^{2}=d r^{2}+d \theta^{2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \theta^{2} \tag{10}
\end{equation*}
$$

3. Consider the two sets of coordinates x, y and r, θ where

$$
\begin{align*}
r(x, y)= & +\sqrt{x^{2}+y^{2}} \tag{11}\\
& \tan (\theta)=\frac{y}{x} \tag{12}
\end{align*}
$$

What are x and y in terms of r and θ ?
If we define x, y as x^{1}, x^{2} and r, θ as $\tilde{x}^{1}, \tilde{x}^{2}$, what are the two Jacobian matrices

$$
\begin{equation*}
\partial_{j} \tilde{x}^{i} \text { and } \partial_{\tilde{j}} x^{i} \tag{13}
\end{equation*}
$$

If the metric for x, y is

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{14}
\end{equation*}
$$

What is the metric in terms of $r, \theta, d r, d \theta$?
4. Given that the metric for x^{1}, x^{2}, x^{3} is

$$
\begin{equation*}
d s^{2}=\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+4\left(d x^{3}\right)^{2} \tag{15}
\end{equation*}
$$

what are the components of the metric $g_{i j}$?
What are the components of $g^{i j}$ and what is \sqrt{g} ?
5. In cylindrical coordinates (r, θ, z), the metric is

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \theta^{2}+d z^{2} \tag{16}
\end{equation*}
$$

Consider the vector potential $A_{r}=\cos (\theta), \quad A_{\theta}=r \sin (\theta), A_{z}=1$ Find the components of $B^{i}=\epsilon^{i j k} \partial_{j} A_{k}$

What are the components of B^{i} if we change the sign of A_{θ} in the above?

