Physics 530-23 Assignment 1

1. Assume that H^{i}_{j} , $L^{j}_{i}_{k}$ and M_{ij} are tensors, and f, g are functions. Which of the following are tensor equations and why? (Recall that a tensor equation is on for which both sides of the equation transform in the same way under a coordinate transformation).

i) $Q_i{}^j = H^j{}_i$ ii) $R = H^i{}_i$ iii) $T^l_{ijk} = H^l{}_i M_{jk}$ iv) $T^l_{ijk} = H^l{}_i + M_{jk}$ v) $R^i = L_j{}^i{}_j$ vi) $S_i = L_i{}^j{}_j - L_j{}^j{}_i$

2. Given coordinates $r, \theta,$ what are the tangent vectors to the curves defined by the coordinate conditions

$$r(\lambda) = r_0 \tag{1}$$

$$\theta(\lambda) = \lambda \tag{2}$$

$$r(\lambda) = \lambda \tag{3}$$

$$\theta(\lambda) = 5\lambda \tag{4}$$

$$r(\lambda) = 10\lambda\tag{5}$$

$$\theta(\lambda) = 50\lambda \tag{6}$$

What is the cotangent vector of the following functions

$$f(r,\theta) = r^2 \tag{7}$$

$$f(r,\theta) = r^2 + \theta^2 \tag{8}$$

In each case find the lengths of these various vectors for each point at which they are defined if the metric is given by a)

$$ds^2 = dr^2 + d\theta^2 \tag{9}$$

and

$$ds^2 = dr^2 + r^2 d\theta^2 \tag{10}$$

3. Consider the two sets of coordinates x, y and r, θ where

$$r(x,y) = +\sqrt{x^2 + y^2}$$
(11)

$$\tan(\theta) = \frac{y}{r} \tag{12}$$

What are x and y in terms of r and θ ? If we define x, y as x^1, x^2 and r, θ as \tilde{x}^1, \tilde{x}^2 , what are the two Jacobian matrices

$$\partial_j \tilde{x}^i \text{ and } \partial_{\tilde{j}} x^i$$
 (13)

If the metric for x, y is

$$ds^2 = dx^2 + dy^2 \tag{14}$$

What is the metric in terms of $r, \theta, dr, d\theta$?

4. Given that the metric for x^1, x^2, x^3 is

$$ds^{2} = (dx^{1})^{2} + (dx^{2})^{2} + 4(dx^{3})^{2}$$
(15)

what are the components of the metric g_{ij} ? What are the components of g^{ij} and what is \sqrt{g} ?

5. In cylindrical coordinates (r, θ, z) , the metric is

$$ds^2 = dr^2 + r^2 d\theta^2 + dz^2$$
(16)

Consider the vector potential $A_r = cos(\theta)$, $A_\theta = r \sin(\theta)$, $A_z = 1$ Find the components of $B^i = \epsilon^{ijk} \partial_j A_k$

What are the components of B^i if we change the sign of A_{θ} in the above?