
Physics 301-24
Assignment 4

[21+2bonus]
1. [5] Consider a point in space containing an electric potential. Consider

a sphere around that point of radius R and within that sphere the potential is
source free. Show that the potential at the center of the sphere is the average
of the potential over the surface of the sphere. (Hint define a Green’s function
G̃(X,X′) where X

′ is the center of the sphere and X is on the surface of the
sphere. Find G̃ such that it is zero on the surface of the sphere. Use that to
find the value of the potential at the center of the sphere in terms of the value
of the potential on the surface.)

—————————————————–
Green’s thm says that the potential field inside a boundary equals the inte-

gral over the boundary of the normal derivative of the Green’s funciton which is
zero on the boundary and has the other point lying on the the point of interest,
times the value of the potential on the boundary.

In our case the point of interest is the center of the sphere. The usual Greens
function is the solution to

∇2G(X,X′) = δ(X,X′) (1)

G(X,X′) = − 1

4π
√

(x− x′)2 + y − y′)2 + (z − z′)2
(2)

To make this into a Green’s function which is zero on the boundary ( which in
this case is the sphere

(x− x′)2 + (y − y′)2 + (z − z′)2 = R2 (3)

is to add to this a solution of the source free equation which makes this zero
on the boundary. But on the boundary G(X,mfx′) is a constant, namely −1

4πR .
And a solution of the free equation is a consant, so,

G̃(X.X′) = − 1

4π
√

(x− x′)2 + y − y′)2 + (z − z′)2
+

1

4πR
(4)

The value of the field at the center, X′ is

φ(X′) =

∫

S

∂⊥G̃(X,X′)φ(X)dS (5)

=

∫

r=R

1

4πr2
φ(r, θφ)r2sin(θ)dθdφ =

∫ ∫

φ(R, θ.φ)
sin(θ)dθdφ

4π
(6)

which says that φ(X′) is just equal to the mean value of the field over the sphere
at distance R away from the point X′. Note that this is independent of R.

=====================================

1



2)[5] show that the monopole (l = 0) moment of a charge distribution is just
the total charge, and the components of the dipole moment are given by

∫

ρ(x, y, z)(xiy)dx
3;

∫

ρ(x, y, z)zd3x;

∫

ρ(x, y, z)(x− iy)d3x (7)

———————————————
The monopole component is just the Y00 = 1√

4π
componment, and thus the

potential is

Φ00(r, θ, φ) = − 1

ǫ0

∫

Θ(r − r′)
1

r
+Θ(r′ − r)

1

r′
1

4π
ρ(r′, θ′, φ′)r′2sin(θ′)dr′dθ′dφ′ (8)

‘ Going far from the distribution of charge (r larger than the charge distribution
size) we get

Φ00(r, θ, φ) = − 1

4πr
(

∫

ρ(r′, θ′, φ′)r′2 sin(θ′)dr′dθ′dφ′ = −Q/4πǫ0r (9)

Now,

Y10 =

√

3

4π
cos(θ) =

√

3

4π

z

r
(10)

Y 11 =

√

3

8π
sin(θ)eiφ = sqrt

3

8π
sin(θ)(cos(φ) + isin(φ)) = sqrt

3

8π

(x+ iy)

r
(11)

Y 1,−1 = Y 11∗ = sqrt
3

8π

(x− iy)

r
(12)

Thus

Φ10(x, y, z) = − 1

ǫ0r2
r′

3r2
ρ(x′, y′, z′)

3

4π
(
z

r

z′

r′
ρ(x′, y′, z′)dx′dy′dz′ = − z

ǫ0r3
1

4π

∫

z′ρ(x′, y′, z′)dx′dy′dz′(13)

Φ11(x, y, z) =
x+ iy

8πr3

∫

(x′ + iy′)

r′
ρ(x′, y′, z′)dx′dy′dz′ (14)

===============================
3)[4] Consider a charge distribution with both a monopole (l = 0) and a

dipole (l = 1 moment to the potential. Show that by changing the origin around
which you calculate the spherical expansion, you can set the dipole moment to
zero, but only if the monopole moment is not zero.

————————————————-
From 2), the dipole moment is proportional to the three terms

∫

ρ(x′, y′, z′)x′d3x′,
∫

ρ(x′, y′, z′)y′d3x′, intρ
Now consider changing the origin of the polar coordinates to x̃ = x′ −X, ỹ =
∫

ρ(x′, y′, z′)x′d3x′y′ − Y. tildez = z′ − Z where X,Y, Z are constants. Then
we get

∫

ρ(x̃, ỹ, z̃)x̃d3x̃ =

∫

ρ̃(x̃, ỹ, z̃)x̃d3x̃ (15)

=

∫

ρ(x′, y′, z′)(x′ −X)d3x′ =

∫

ρ(x′, y′, z′)x′d3x′ −X

∫

ρ(x′, y′, z′)d3x′(16)

=

∫

ρ(x′, y′, z′)x′d3x−XQ. (17)
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where Q is the total charge.Thus if we translate x by X =
∫

ρ(x′, y′, z′)x′d3x/Q
the new x component of the dipole moment will be 0. Exactly the same ar-
guement applies to the y and z components. Thus we can always make the
dipole moment to be 0 by a suitable translating if the charge Q ( the monopole
moment) is non-zero.

Note that the same is true of the other moments. If the dipole moment is
the first non-zero dompoent, one can always drive the quadrapole moment to
zero by a translaton of the coordinates.

4) [7 +2bonus] Consider the potential in cylindrical ccordinates with metric

ds2 = dr2 + r2dφ2 + dz2 (18)

Write the Poisson equation of this metric in the ”seperation of variables” form.
Solve the angular and the z equation.
In the case that the solution is independent of z solve the radial equaiton.
In the case that the solution is not independent of z, the solutions of the

radial equations are modified Bessel functions. Any second order differential
equation has two indepdenent solutions. What are the behaviour of the two
solution near r = 0. What are the behaviour of the two solutions near r = ∞.
Note that in order to get regular solutions both at rnear zero and r near infinity,
one must have charges in the space. (This is another manifestation of the
theorem tha tthat the Poisson equation without sources has only one regular
solution, the potential is constant everywhere.

Note again that the seperation of variables works only if there are symmetries
of the equation. In this case, translation of z and rotation around the z axis.

————————————————
[1]

1

r
∂rr∂rΦ+

1

r2
∂2
φΦ+ ∂2

zΦ = − 1

ǫ0
ρ(r, φ, z) (19)

Assume we can write Φ = F (r)E(φ)H(z) Then

FEH(
1

rF (r)
∂rr∂rF (r) +

1

r2
1

E(φ)
∂2
φE(φ) +

1

H(z)
∂2
zH(z) = −ρ(r, φ, z) (20)

[2]
We assume that the terms which are z and φ dependent are constants

1

E(φ)
∂2
φE(φ) = −m2 (21)

1

H(z)
∂2
zH(z) = −k2 (22)

which have solutions

H(z) = eikz (23)

E(z) = eimφ (24)
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In order that E(φ+2π) = E(φ) we need m to be an integer. Then in order that
∫

Em(φ)∗Em′(φ)dφ = δm,m′ we need Em(φ) = 1√
2π

[2]
And if we want

∫∞
−∞ Hk(z)

∗Hk′(z)dz = δ(k − k′) we need

Hk(z) =
1√
2π

eikz (25)

Thus we can write the equation as

Φ(r, φ, z) = Fkm(r)
1

2π
eimφeikz (26)

1

r
∂rr∂rFkm(r)− m2

r2
Fkm(r)− k2Fkm(r) = − 1

ǫ0
ρkm(r) =

−1

ǫ0

∫ ∫

ρ(r, φ, z)Hk(z)
∗Em(φ)∗dzdφ (27)

Now we can write this in terms of a r green’s function, such that

1

r
∂rr∂rGkm(r, r′)− (

m2

r2
+ k2)Gkm(r, r′) = δ(r − r′) (28)

[2]
Let us first look at the situation where the density is independent of z. Then

the only important parts are k2 = 0 and thus we have the equation

1
r
∂rr∂rF0m(r)−m2

r2.F0m(r) = 0
(29)

each term reduces the power of r by 2, so it would seem that a simple power of
r would work. Take F0m(r) = αnr

n we get

(αn)(n
2 −m2)rn−2 = 0 (30)

which gives the two solutions which go as r±m. The term which goes as r|m|

goes to zero as r → 0, while the term which goes as r−|m| diverges at r=0, but
is well behaved at r → ∞. Thus the solution needs to go as 1

r|m| for r > r′ and

go as r|m| as r → ∞. It also has to be continuous as r = r′. Thus

G0m(r, r′) = C

(

(
r′

r
)|m|Θ(r − r′) + (

r

r′
)|m|Θ(r′ − r)

)

(31)

is continuous at r = r′, its first derivative is discontinuous at r − r′

r∂rG(r, r′) = C|m|
(

−r′

r
)|m|Θ(r − r′) + (

r

r′
)|m|Θ(r′ − r)

)

(32)

which has a step discontinuity of size −2C|m| at r = r′. The derivative of this

would give a δ function of size −2C|m| times 1
r′

or C = − r′

2|m|
Thus

1

r
∂rr∂rG(r, r′)− m2

r2
G(r, r′) =

1

r′
δ(r − r′) (33)
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G(r, r′) = − r′

2|m|

(

(
r′

r
)|m|Θ(r − r′) + (

r

r′
)|m|Θ(r′ − r)

)

(34)

will give the δ function.
[ 2-bonus]
However, the above is a bit premature, since m = 0 is somewhat anomolous.

r0 and r−0 are the same solution, not two different solutions. Looking at the
equation of m = 0, we have

1

r
∂rr∂rG(r, r′) = 0 (35)

(which is true for r 6= r′ has the two solutions constant and ln(r). Near r = 0,
only the constant is regular. As r → infty, the ln(r) solution would seem to
be divergent as well. However, the derivative, which is the electric field in the
radial direction, falls as 1/r Ie, it is (sort of regular. ) as r → ∞

[0]
Now what about k 6= 0 The solutions of the Homogeneous equaitons give

1

r
∂rr∂rGkm(r, r′)− (

m2

r2
+ k2)Gkm(r, r′) = 0 (36)

If we multiply r by k, we get

1

kr
∂kr(kr)∂kr − (

m2

(kr)2
+ 1)G(kr, kr′) = 0. (37)

Near kr=0, this equation has solutions (kr)±|m| for which only the (kr)|m|
is well behaved. Near r → ∞, the solution goes as e±kr, for which only the
minus sign is well behaved at infinity. Th full solution is called the modified
Bessel function. Ii|m|0(kr) is well behaved near 0, while K|m|(kr) decreases
exponentially as r goes to infinity.
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