
Div, Grad, Curl

I. ANTISYMMETRIC DERIVATIVE

Given and arbitrary cotangent type vector field Ai(X), the antisymmetric derivative ∂iAj − ∂jAi is a two indes
cotensor type tensor. Define

Fij = ∂iAj − ∂jAi. (1)

If Fij is a tensor then it must transform as

F̃ij = ∂ĩx
k∂j̃x

lFkl (2)

The right side of the equations transforms as

∂ĩÃj − ∂j̃Ãi

= ∂ĩ(∂j̃x
kAk − ∂j̃(∂ĩx

kAk)

=
[

∂ĩ(∂j̃x
k)Ak − ∂j̃(∂ĩx

k)Ak

]

(∂j̃x
k∂ĩAk − (∂ĩx

k∂j̃Ak) (3)

The part in square brackets is

[

∂ĩ(∂j̃x
k)Ak − ∂j̃(∂ĩx

k)Ak

]

=
[

∂ĩ∂j̃x
kAk − ∂j̃∂ĩx

kAk

]

(4)

But

∂ĩ∂j̃x
k = ∂j̃∂ĩx

k

which sets that equal to 0. The rest is just

∂ĩx
k∂jx

l(∂kAl − ∂lAk) (5)

which is the same as left side. Ie, this antisymmetric derivative of Aiis a tensor equation.
This means that the curl

Bi =
1

2
ǫijk(∂jAk − ∂kAi) =

1

2
ǫijk∂jAk − 1

2
ǫikj(∂kAj)

= ǫijk(∂jAk) (6)

transforms like a Tangent vector.

II. DIVERGENCE

The divergence has a similar problem. The divergence would look something like ∂iC
i But when one does a

coordinate transformation, this would become

∂ĩC
ĩ = ∂ĩx

k∂k(∂lx̃
iCl) = [∂ĩx

k∂lx̃
i∂lC

l

(7)
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It is that second derivative term that is the problem Is there something using say the metric or the determinant
that gets rid of this term? the ansswer is yes.
Define the divergence by

divC =
1√
g
∂i
√
gCi (8)

We know that divcurlC is supposed to be 0, but
∂i(ǫ

ijk∂jAk) has an extra 1
√
g in the definiton of ǫijk

ǫijk =
1√
g
eijk (9)

where the coeficients of e are all ±1 or 0. Thus

1√
g
∂i(

√
gǫijk∂jAk) =

1√
g
∂i(

√
g

1√
g
eijk∂jAk)

=
1√
g
eijk∂i∂jAk = 0 (10)

just as one knows from the behaviour of (div curl A) in cartesian coordinates. This thus gives the definiton of the div.

divC =
1√
g
∂i
√
gCi (11)

III. GAUSS’S LAW

Having the expression for div and curl in an arbitrary coordinate system, we can now prove Gauss’s thm and Stokes
thm. byt evaluating them in a coordinate system which is specially selected to have certain properties. Then since
we know that the equation is a ”physical” expression (tensor) we know it must be true in an arbitrary coordiante
system.
Lots look at the integral of the divergence of a tangent vector over a volume. We will asume that that the volume

a simply connected region, as is the surface. We also assume that the surface is ”smooth”.
The integral of the divergence will be

G =

∫

V

1√
g
∂i
√
gCi(

√
gdx1dx2dx3) (12)

The term (
√
gdx1dx2dx3) is the physical volume element (length times width time height).

G =

∫

V

∂i(
√
gCi)dx1dx2dx3 =

∫

V

(∂2(
√
gC1)dx1)dx2dx3 + ∂1(

√
gC2)dx1)dx1dx3 + (∂3(

√
gC3)dx3)dx1dx2 (13)

Now, pick a point inside the volume, and define the coordinates to have the following features. At that point, x1

has the value 0, and has the value 1 everywhere on the surface. Near the point choose, x1 = r, x2 = θ, x3 = φ with
the metric corresponding to the these polar coordinates. We extend the line (θ, φ constants) from 0 to the surface
arbitrarily but such that lines for different θ, φ never cross, and such that just at the surface, the lines hit the surface
perpendiculary. Note that these lines of constant θφ need not be straight lines. They can wiggle all they want, just
satisfying the above requirements. The second and third integrals along the lines of constant r, θ and r, phi are such
that at their endpoints (φ = 0, 2π) and constant r, θ are the same points in space, so the difference of C3 at thos
endpoints is 0. Similarly the integral over φ in the second integral goes to 0 at θ = 0, π so the seond and third integrals
are both zero.
At r=1, becaue the lines are perpendicular to the surface, the g1i components will be zero unless i=1. Thus the

determinant will be of the form sqrtg =
√
g11

√

2g where 2g is the determinant of the 2-D metric on the surface. Thus
the first term is

G =

∫ √
g11C

1(1, θ, φ)
√

2gdθdφ (14)

But the length squared of the x1 component of C is g11C
1 and

√

2gdθdφ is the physical surface element of the x1 = r
surface. Ie the volume integral of the divergence is the integral over the surface of the length of the perpendicular
compoent of Ci at the surface. Since this is the value in this coordinate system it must also be the answer in all
coordinate systems.
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FIG. 1: Figure 1. Diagram for Gauss’s law, with x
1 = 0 being some point inside the surface, x1 = 1 being the outer boundary

of region, x1 constant are topologically spheres (closed surfaces, with x
2
, x

3 constant being the x
1 curves

IV. STOKES’ THEOREM

Stokes them says that integral of the length of the perpendicular component of the curl over a surface equals the
integral of the length of the component of the the vector parallel to the edge over the edge. Define the coordinate
x1 so that the surface to be defined by x1 = 0 and assume as above that x1 coordinate lines are perpendicular to
the surface at the surface. Now layer the surface with a set of coordinates x2, x3 in a similar manner to the Gauss’s
law. Choose a point in the surface, and near that point define the coordinates x2 and x3 to be polar coordinates
x2 = r, x3 = φ. Populate the surface with a set of non-crossing lines running from x2 = 0 out to the edge of the
surface. and define x3 to be constant along these lines. and define x2 so that it is 0 at the center point and is 1 at
the boundary curve. Now define assume you have a cotangent vector field Ci such that its length everywhere is finite
and such that the length of its curl is finite everywhere on the surface. Now integrate the length of the component of
the curl perpendicular to the surface over the surface. This will be equal to the one dimensional integral along the
boundary of the length of the component of the vector field itself along that boundary.

The curl of a cotangent type vector field Ci is ǫ
ijk∂jCk. The length of the component perpendicular to the surface

is
√
g11ǫ

1jk∂jCk. Because we constructed the coordinates so that the x1 lines (ie the lines along which x2, x3 are
constant) are perpendicular to the surface at the surface, we have g12 = g23 = 0 and thus g12 = g13 = 0. The element

of surface area of the surface is
√

2gdx2dx3, the determinant of the metric restrited to the surface. At the surface,
the integral of the length of the component of the curl perpendicular to the surface is thus be

S =

∫ √
g11

1
√

g112g
e1jk∂jCk

√

2gdθdφ

=

∫

e1jk∂jCkdx
2dx3 (15)

Integrating with respect to x2 in the first term and x3 in the second, we get

S =

∫

2π

0

C3dx3|1x2=0
−
∫

1

0

C2dx2|2πx3=0
(16)

The second term is 0 because the argument of has the same value at 0 and 2π for each x2 (the line defined by
x1 = 0, x2 − const is a closed curve).
The first term can now be written as

S =

∫

2π

0

1

g33
C3

√
g33dx

3|1x2=0
(17)

Since at x2 = 0 the coordinates on the surface look like polar coordinates, g33=0 and the length of the curve is 0. As
long as the length of C3 is finite, the contribuiton for x2 = 0 is zero. Thus the only contribution is from the x2 = 1
curve, which is the boundary of the surface by construction.
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FIG. 2: Figure 2.

Diagram of coordinates for Stokes thm, with the x1 = 0 defining the surface, and x1 lines meeting surface perpendic-
ularly, x2 = 0 is point inside surface, x2 = 1 is outer boundary, and the x2 curves meeting the surface perpendicularly,
and x3 curves being closed curves with values from 0 to 2π.
————————————–
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