
Electrostatics in media

For electrostatics in media, one does not use the full Maxwell equations, since the structure of the medium will in
general have a high level of fluctuation of ρ an J with space inside the medium, and thus a high degree of fluctuation
of the EM fields as well. Instead of taking into acound all of these fluctutions, one looks instead a smoothed averages
of these fields. Because of the linearity of electromagnetism, one can take averages, and the average of the density

and currents will produce averaged fields (Φ, ~A. ~E, ~B ). Given some averaging function f(~x − ~x′), whose regime in
this it is non-zero (or non-negligably different from 0) is of the order of L which is much greater than the size of the
atoms. Define the average ρ, < ρ >

< ρ(x) >=

∫

f(x− x′)ρ(x′)d3x′ (1)

Then we note that if we have any quantity, say R(x), then

∂i < R(x) >= ∂i

∫

f(x− x′)R(x′)d3x′ = −

∫

(∂′

if(x− x′))R(x′)d3x′ = −

∫

∂′

i(f(x− x′)R(x′))d3x′ +

∫

f(x− x′))∂′

iR(x′)d3

unsing integration by parts in the third expression, and that for large x′, f(x-x’) is zero. Thus the derivative of the
local average of a function is the average of the derivative. This means that the derivatives of the average of the
potential Φ is the average of the derivatives, and

< ∇2Φ(x) >=< ∇2Φ > (x) >= −
1

ǫ0
< ρ(x) > (3)

< Φ(x) >=
1

4πǫ0

∫

1

|~x− ~x′|
< ρ > (x′)d3x′ (4)

Lets assume that the material is made up of atoms, located at locations xi
α, whose charge density for that specific

atom dies on distances from the center of the atom of much less than L. Then we can write

ρ(x) =
∑

α

ρα(x) (5)

where ρα is the charge distribution of the atom α around the location xi
α. Then we can write

< ρ(x) >=
∑

α

∫

f(x− x′)σασ(x
′ − xj)d3x′ (6)

=
∑

α

∫

f(x− xα) + (x′j − xj
α)∂xj

α
f(x− xα)σ(x

′ − xα)d
3x′ (7)

=
∑

α

(qαf(x− xα))− ∂jP
j
α) =< q(x) > − < ∂jP

j > (8)

[Note, the situation is actually more subtle than the above. In particular all those ”atoms” or ”molecules” are not
independent entities, but they interact with each other. Those interactions create correlations between the atoms. (if
one has a dipole moment, that dipole moment will inteact with the charges in the next atom, creating correlations.
Furthermore, except at absolute zero temperature, the atoms are moving and changing those correlations. Thus, the
charge density distributions are not static but rather are dynamic and are also stochasitc (the charge distributions,
influenced by so many other atoms, cannot be said to have a specific distribion but a probabilty distributon over
many different charge distributions. Thus one must also take statistical averages as well as spatial averages. Thus,
that the phenominological theory above works as well as it does in many situations is surprizing, although that the
averages are being taken over numbers like 1024 gives one at least the hope that it is a reasonable approximation.]

Thus we can approximate the mean charge density as the mean excess charge density of the atoms plus the mean
divergence of the dipole moment of the atom. Thus we get the equaiton

∇· < ~E >=
1

ǫ0
(< ρ(x) > −∇· < ~P >) (9)

∇ · (~<E > +
1

ǫ0
< ~P >) =

1

ǫ0
< q(x) > (10)
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It is then usual to define

~D = ǫ0 ~E + ~P (11)

and the equation becomes

∇· < ~D >=< q(x) >≈< ρf > (12)

The < q > are called the ”free” charges, while the ∇ · ~P are called the bound charges. The nomenclature makes
no sense, since the ”free charges” are not necessarily free to move around, nor are the bound charges necessarily
bound– they are just localized. Furthermore, the location of the charges, due to the interaction with neighbouring
atoms, are corellated. Ie, if you have a fluctuation of the location of one atom, the fluctutions of neighboring atoms
will be correlated (or in quantum terms, entangled) Griffith’s worry about sodium chloride for example assumes that
there are no fluctuation of the positions of the charges, which, unless the system were at absolute zero temperature
classically, is not how the system behaves.)
[The ”free charges” are assumed to be 0 for most situations. If not, the whole procedure becomes ill defined, since

if a region has a net charge, then by altering the coordinate location that one takes as the location of the atom, one

can make ~P have any value on wants.
Consider a fixed charge distribution ρ(x) suppsedly centered at xα. Then

Q =

∫

ρ(x)d3x; ~Pα =

∫

(~x− ~xα)ρ(x)d
3x (13)

Now instead of chosing xα as the center, choose ~xβ Then

Q = ρ(x)d3x; ~Pβ = int(~x− ~xβ))ρ(x)d
3x = int(~x− ~xβ))ρ(x)d

3x+ (~xα − xβ)ρ(x)d
3x (14)

=Q +~Pα + (~xα − ~xβ)Q (15)

This means that we can make ~Pβ any value we wish, simply by choosing xβ appropriatly. Mind you this will also
make the higher mutipoles change, and can make them become large enough that they contribute to < ρ > (x)
substantially. ]
Thus the electrostatic equations in a medium are

< Ei >= −∂i < Φ > (16)

∇× < ~E >= 0 (17)

∇· < ~D >=< ρfree > (18)

D = ǫ0 ~E + ~P (19)

Note that this does NOT mean that ~D is the gradient of a potential, since there is no particular reason except accident
that ∇ × P = 0 This is especially true if for example the material has edges. Since P can be non-zero only inside
materials, if the material has an edge then the curl of P will probably not be zero.

Note also that if the material has an edge, then ∇· ~P will probably have a smeared (because of the averaging volume
designated by f) delta function where P end at the end of the material.

For most materials, for weak enough electric fields, the dipole moment will be be linearly proportional to the electric
field. For many atoms if one puts on an electric field, the atom will become polarized, as the electrons will be repelled

by the field to the other side of the atom. This will in general be very small, because the e ~Ed where d is the diameter
of the atom, will be a far smaller energy than the binding energy of the electron to the atom. Only when the electric
field becomes strong enough to stip electrons away from the atom, will the dipole moment beome a non-linear function
of the E field.
Depending the internal structure of the atoms, the linear dependence can be positive (or rarely, and then almost

always only at non-zero frequencies, negative).

~P = χ~E (20)

For positive χ it is called a dielectric material, while for negative χ it is a paraelectric material. Unlike for magnetism,
ferro electric matrials are rare, but some materials when then are cooled below the melting point in a strong external
electric field, can freeze-in any polarisation that was present in the melted material. These are called electrets, and
just like permanant magnets, can be handy. For example the ultra cheap (but accurate) microphones have internal
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FIG. 1: Figure DE-cont.ps. Continuity via Stokes and Gauss

electrets to supply an electric field for a thin layer, usually of aluminized plastic held a little way from the top of the
electret supplying an electric field at the ”diaphram”. As the diaphram is pushed toward the electret, the voltage
between the the electret and the daphram decreases (V=EL, where L is the distance between the electret and the
diaphram, and the change in voltage drives a change in current in the external circuit.
There is another feature of the above. We have

∇× ~E = 0 (21)

as one of out equations. Now, staring at any point ~x0, can draw a line from there to any other point ~x. Now define
the function

Ψ(~x) =

∫ ~x

~x0

~E · ~dl|line1 (22)

, the line integral along the path from ~x0 to ~x. If we take any other line between the two points, call it line 2, then

the difference between the two integrals is the line integral of ~E around the surface spannned by these two lines. But

Stokes them says that the is the surface integral of ∇ × ~E over that surface, which is 0, by the averaged Mawell

equations when < ∂t ~B = 0 >.Thus the integral between the two points of ~E is the same, no matter what the line
taken is. Ψ is a function only of ~x. Furthermore, by choosing the line so that near x the curve only goes in the xi

direction, we find that the derivative of Ψ in the xi direction is uniquely defined as Ei. Thus,

Ei = ∂iΨi (23)

and acts as a potential for E. (this was the same argument I used in the Aharonov Bohm note to argue that one

could alsoways find a gauge transformation which would set ~A = 0 in a region where ~B = ∇ × ~B = 0.. This is not

terribly helpful, since a this says if we know what ~E is, we can find a potential, but does not say what that potential
is, or how to find it.

In the case where ~D is linearly dependent on E, ~D = ǫ ~E, and epsilon is a constant, then the ρf = 0

∇ ~D = 0 (24)

and thus

∇ ~E = 0 (25)

. Thus Ψ obeys

∇2Ψ = 0 (26)
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In the boundaries where ǫ changes we have the boundary conditions that ~D⊥ is continuous. If we choose the surface
to be x1 = const, and such that g11 = 1 and g1j = 0 for j 6= 1 then ǫ(x1)∂1Ψ is continuous, as well as ∂jΦ(~x); j 6= 1
is continuous.
We will find that the same argument can be applied to H and B in the magnetic case. Ie, there to there are limited

cases where H is also determined by a potential.

I. SHIELDING

Lets apply the above to dielectric shielding. Consider a sphere of outer radius r2 and inner radius of r1, made of a

dielectric material with very high dielectric constant ǫ/ǫ0 >> 1. Ie, between those two radii, the relation between ~D

and ~E is

~D = ǫ ~E (27)

Note that I am dropping the averageing symbols, knowing that if I am talking about D there must be averaging

involved. Outside and inside we have the vacuum relation ~D = ǫ0 ~E. Assuming that there are no ”free” chages, The
equations are

∇× ~E = 0 (28)

∇ ·D = 0 (29)

In all three areas, since ǫ is constant, its derivatives are 0, so we have

∇× ~E = 0 (30)

0 = ∇ · (ǫ ~E) = (∇ǫ) ~E + ǫ∇ · ~E = ǫ∇ · ~E∇ · ~E = 0 (31)

so the potential within the region obeys

∇2~Φ = 0 (32)

Since we have spherical symmetry, in each region we can expand the potential in spherical harmonics and get

Φ =

∞
∑

l=0

l
∑

m=−l

Ylm(Clmrl +Dlmr−(l+1)) (33)

where this came from our separation of variables solution of the sphericaly symmetric chargeless solution of the Poisson
equaiton.

Now at the boundries, using Stokes thm on ~Efor a path which which hugs the surface of discontinuity of ǫ to get

∫

path

~E · d~l =

∫

surface

(∇× ~E) · ~nd2S = 0 (34)

so the interal over the path on the two sides of the surface are equal. Ie, the component of E parallel to the surface
of discontinuity of dielelectric permattivity is continuous.

But parallel to the surface of discontinuity of ǫ is perpendicular to the radius, and is thus is the θ and φ derivatives
of Φ.
Thus ∂θΦ and ∂φΦ must be continous across the surface which means that Clmrld +Dlmr

−(l+1)
d must be the same

on either side of the surface even though the C an D coefficients will change on going across the surface. (rd is the
radius at which the dielectric constant is discontiuous).

Using Gausses thm on the radial derivative of Φ, since ∇ · ~D = 0 perpendicular to the surface of r equals constant,
is ǫ∂rΦ so we find that the radial component of D must be continuous. Thus

ǫ∂r(Clmrl +Dlmr−(l+1)
= ǫ′∂r(C

′

lmrl +D′

lmr−(l+1) (35)

at the value of r where ǫ changes. This must be true for each value of l,m.
Now place that sphere into a constant electric field, and lets assume that field points in the z direction. Then

Ex, Ey are zero, and Ez = E0, and Φ far way must be −E0z. But z = r cos(θ), and we have cos(θ) ∝ Y10(θ, φ), so we
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expect that only the Y10 sperical harmoic will enter the solutions. Ie, continuity of Eparallel implies that in all of the
regions, the angular dependence is cos(θ) Thus

Φ = −(E0r +
D10

r2
)cos(θ); r > r2 (36)

= (C ′

10r +
D′

10

r2
)cos(θ); r2 > r > r1 (37)

= (C̃10r +
D̃10

r2
)cos(θ); r < r1 (38)

But for r < r1 as we go to zero, we want the potential to be regular, not singular, so D̃10 = 0. We thus have the 4

equations, two being that the parallal components of ~E are continuous, and two that the perpendiculat component
of Dr = ǫ(r)Er = −ǫ(r)∂rΦ is continuous.

(−E0r2 +
D10

r22
) = C ′

10r2 +
D′

10

r22
) (39)

C ′

10r1 +
D′

10

r12
= C̃10r1 (40)

ǫ0(−E0 − 2
D10

r23
= ǫ(C ′

10 − 2
D′

10

r2
) (41)

ǫ(C ′

10 − 2
D′

10

r1
) = ǫ0C̃10 (42)

4 linear inhomogeneous equations in 4 unknowns can be solved. Of interest is the field inside. Solving for C̃10 which
gives the potential inside the sphere, we get, using λ = ǫ

ǫ0

C̃10 = −E0

(

9λr23

2(r2− r1)(r12 + r2r1 + r22)(λ− 1)2 + 9λr22

)

(43)

As λ gets very large, it is the first term in the denominator that dominates, And C̃ becomes very small. The dielectic
acts as shield for the inside of the cavity. (note that one could regard a conductor as a dielectric with λ → ∞.
(Note that pure water has a λ of about 80) so it acts as a good shield against static ( and thus also low frequency)

electric fields.)
.
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