
Maxwell Equations

The fundamental dependent variables are a scalar field φ(t,X) and a cotangent vector field Ait,X. Ie, these fields
are functions that exist everywhere in space and time. Use these to define and Electric and a magnetic field

1 Ei = −∂iφ− ∂tAi (1)

2 Bi = ǫijk∂jAk (2)

From these definitions we get two identities
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Note that these depend on the metric only through the determinant of the metric.
The other two equations are
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where ǫ0µ0 = 1
c2

with c the velocity of light, and both c and µ0 being defined, not measured, quantities. µ0 = 4π10−7.
The arise because of the separate definition of the Volt (used in E) and the Coulomb used in defining both the
Coulomb and current.

I. CONSERVATION OF CHARGE

Take the div of the 4th Maxwell equations:
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But the LHS is 0, because ǫijk = 1√
g
eijk and that gives ∂i(
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commute. Thus
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Integrating over the a volume we have

∂tQ =

∫
ρdV = −

∫
J⊥dS. (9)

Ie the rate of change in time for the total charge Q inside a volume equals the perpendicular flow of current into that
volume through the surface. This equation is the conservation of charge equations. Note that this equations MUST
be satisfied or Maxwell’s equations are inconsistent.

II. GAUGE FREEDOM

If we consider Maxwell’s equation, especially the definition of Ei and B
i in terms of φ,Ai, there is a freedom there.

Consider the transformation

Âi = Ai + ∂iψ (10)

φ̂ = φ− ∂tψ (11)
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then the E and B, and thus the Maxwell equations in terms of E and B, are left unchanged. Êi = Ei and B̂
i = Bi.

This is called a gauge transformation. If one believes that only the electric and magnetic fields are measurable, then
regarding φ and Ai as being fundamental seems a bit perverse. On the other hand, if one goes to a Lagrangian or
Hamiltonian approach, then the only way one can write a Lagrangian for the electromagnetic field is by using φ and
Ai. Furthermore, there are cases where one can actually measure aspects of Ai directly (Aharonov Bohm effect, which
is not just a quantum effect, even though that was where it was discovered, but is also a classical effect.) It depends
directly on the integral of Ai along a closed path. Since the vector potential depends non-locally on the Bi field, this
means that a magnetic field can have effects on things which never enter the region in which the magnetic field is
non-zero.
Gauge freedom is something like coordinate freedom. Any physical quantity must remain the same when the gauge

is changed.
The gauge allows one to change the potentials. For example if we choose ψ(t,X =

∫
φ(t,X, then the new scalar

potential will be 0. If we chose 1√
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is 0. (Note that it is always possible to choose ψ in this way. This is called the Coulomb gauge. Or we could choose
the gauge so that
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after the gauge transformation (again this is always possible, as long as the original φ, Ai fall off towards infinity
sufficiently fast. This is called the Lorenz (after L. Lorenz) not to be confused with H. Lorentz of Lorentz transfor-
mations) gauge, and is most useful when looking at free electromagnetic waves. Again, it is only valid if the spatial
metric is time independent.
Both Bi and Ei are invariant under any gauge transformations. This would mean that they are physical quanties

which could be measured (ignoring the coordinate dependence). However there are also aspects of the potentials

themselves which are also gauge invariant. For example if we take the integral of Ai around a closed curve (
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where xi(λ = 0) = xi(λ = 1), or a closed curve), then
∫
∂iψ

dxi
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= ψ(t,X(λ = 1)) − ψ(t,X(λ = 0)) = 0 because all

the coordinates are the same at λ = 0 and λ = 1. Thus the path integral of Ai is independent of the gauge, and
could therefore be measurable. That they are indeed measurable took about 100 years for a graduate student, Y
Aharonov (with help from his supervisor and from MHL Pryce), to notice in 1959. That it is measurable is now called
the Aharonov Bohm effect (Bohm was Aharonov’s PhD supervisor), and it actually has been measured. It was first
discovered in quantum mechanics, but is also true for classical field theories.

We know that Bi = ǫijk∂jAk and thus by Stokes thm, the integral of a surface of the perpendicular component of
Bi to the surface is equal to the integral of Ai around the boundary of the surface. Thus, if Bi is non-zero only in a
limited region, Ai can be non-zero outside that region and one can do an experiment with charges which are always
outside the region where Bi is non-zero to measure that gauge invariant path integral of Ai. So one must say either
that aspects of Ai are real even in regions where there is no magnetic or electric fields, or one must say that the
charges non-locally detect the magnetic fields. This latter is the attitude of many physicists, which seems perverse,
when you can alternatively just say that the vector potential is physical and measurable.
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