Rodriquez Formula

Consider the formula for the angular momentum functions

$$
\begin{equation*}
\frac{1}{\sin (\theta)} \partial_{\theta}\left(\sin (\theta) \partial_{\theta} P_{l m}(\theta)\right)+\frac{m^{2}}{\sin (\theta)^{2}} P_{l m}=-\lambda P_{l m} \tag{1}
\end{equation*}
$$

and let us first look at $m=0$.
The first thing is to do a change of variables, setting $x=\cos (\theta)$. we have

$$
\partial_{\theta}=\partial_{\theta} x \partial_{x}=\sin (\theta) \partial_{x}
$$

which transforms the equation to

$$
\begin{equation*}
\partial_{x}\left(\left(1-x^{2}\right) \partial_{x} \tilde{P}_{\lambda}(x)\right)=-\lambda \tilde{P}_{\lambda}(x) \tag{2}
\end{equation*}
$$

where

$$
P_{\lambda}(\theta)=\tilde{P}_{\lambda}(\cos (\theta))
$$

The first thing is that the $P_{\lambda}(\theta)$ are orthogonal for different λ.

$$
\begin{align*}
& -\lambda \int P_{\lambda^{\prime}}(\theta) P_{\lambda^{\prime}}(\theta) \sin (\theta) d \theta d \phi=\int P_{\lambda^{\prime}}(\theta) \frac{1}{\sin (\theta)} \partial_{\theta}\left(\sin (\theta) \partial_{\theta} P_{\lambda}\right) \sin (\theta) d \theta d \phi \tag{3}\\
& \quad=-\int \partial_{\theta} P_{\lambda^{\prime}} \sin (\theta) \partial_{\theta} P_{\lambda}(\theta) d \theta d \phi=\int P_{\lambda}(\theta) \partial_{\theta}\left(\sin (\theta) \partial_{\theta} P_{\lambda^{\prime}}(\theta)\right) d \theta d \phi=-\lambda^{\prime} \int P_{\lambda^{\prime}}(\theta) P_{\lambda^{\prime}}(\theta) \sin (\theta) d \theta d \phi \tag{4}
\end{align*}
$$

This can be true only if $\lambda^{\prime}=\lambda$ or if $\int P_{\lambda^{\prime}}(\theta) P_{\lambda^{\prime}}(\theta) \sin (\theta) d \theta d \phi=0$
Note that this means that

$$
\begin{equation*}
\int_{-1}^{1} \tilde{P}_{\lambda}(x) \tilde{P}_{\lambda^{\prime}}(x) d x=0 \tag{5}
\end{equation*}
$$

if $\lambda \neq \lambda^{\prime}$
We can now look at the power series expansion of $\tilde{P}_{\lambda}(x)$

$$
\begin{equation*}
P_{\lambda}(x)=\sum_{n} a_{n} x^{n} \tag{6}
\end{equation*}
$$

using the equation we find, setting each power of x to zero

$$
\begin{equation*}
a_{n+2}(n+2)(n+1)-a_{n}(n)(n+1)+\lambda a_{n}=0 \tag{7}
\end{equation*}
$$

For large n, this becomes approximately

$$
\begin{align*}
& a_{n+2}=a_{n}\left(\frac{n}{n+2}-\frac{\lambda}{(n+2)(n+1)}\right) \approx a_{n}(1-2 / n) \tag{8}\\
& \frac{d a_{n}}{d n} \approx-1 / n a_{n} \tag{9}\\
& a_{n} \approx-\frac{2 R}{n} a_{R} \tag{10}\\
& a_{n} x^{n} \approx \frac{2 R}{n} a_{2 R} x^{2 R} x^{n-2 R} \tag{11}
\end{align*}
$$

If $x_{i} 1$, this means that for large enough n, each term in the series gets larger and larger and the series diverges. Ie, the solution goes singular at $x= \pm 1$. The only way to avoid this is to have a_{n} being zero for some value of n. This will occur for $n(n+1)=\lambda$ for some value of n.

Thus, the solutions must have $\lambda=l(l+1)$ to be regular at $x= \pm 1$
Thus the solution must be a polynomial in x with terms going from x^{0} to x^{l}. There are l values of \tilde{P}_{l}, all orthogonal to each other under the integral from $-1 t o 1$, so if we take linear sums, we can generate l polynomials with arbitrary coefficients for the various powers of x. And \tilde{P}_{l+1} must be orthogonal to every polynomial of degree of l. Consider

$$
\begin{equation*}
\tilde{P}(x)=\partial_{x}^{l+1}\left(1-x^{2}\right)^{l+1} \tag{12}
\end{equation*}
$$

It is a polynomial of degree $l+1$, and if $\mathrm{Q}(\mathrm{x})$ is a polynomial of degree l we want

$$
\begin{equation*}
\int_{-1}^{1} \partial_{x}^{l+1}\left(1-x^{2}\right)^{l+1} Q(x) d x=0 \tag{13}
\end{equation*}
$$

$\partial_{x}^{l}\left(1-x^{2}\right)^{l+1}$ must have at least a factor of $\left(1-x^{2}\right)$ since the 1 derivatives can hit at most 1 of the factors of $1-x^{2}$ at lest once.

Then

$$
\begin{align*}
& \int_{-1}^{1} \partial_{x}^{l+1}\left(1-x^{2}\right)^{l+1} Q(x) d x=-\int_{-1}^{1} \partial_{x}\left(\partial_{x}^{l}\left(1-x^{2}\right)^{l+1} Q(x)\right)-\int_{-1}^{1} \partial_{x}^{l}\left(1-x^{2}\right)^{l+1} \partial_{x} Q(x) d x \tag{14}\\
& 0-\int_{-1}^{1} \partial_{x}^{l}\left(1-x^{2}\right)^{l+1} \partial_{x} Q(x) d x \tag{15}
\end{align*}
$$

since the factor $\left(1-x^{2}\right)$ in $\partial_{x}^{l}\left(1-x^{2}\right)^{l+1}$ is zero at both $\mathrm{x}=1$ and $\mathrm{x}=-1$. Doing integration by parts $l+1$ times gives us

$$
\begin{equation*}
\int_{0}^{1}\left(1-x^{2}\right)^{l+1} \partial_{x}^{l+1} Q(x) d x=0 \tag{16}
\end{equation*}
$$

since taking $l+1$ derivatives of a polynomial of degree l is zero.
Ie, if $\tilde{P}_{l+1}(x) \propto \partial_{x}^{l+1}\left(1-x^{2}\right)$ then if is orthogonal to all lower index $P_{r \leq l}(x)$ (and if we use the same expression, all higher ones will also be orthogonal.)

The standard expression is to choose $\left(P_{l}(1)=1\right.$. If two derivatives hit any one of the factors of $1-x^{2}$, then the rest of the expression must have a factor of $1-x^{2}$ left over that that is equal to 0 at $x= \pm 1$ each factor of $\left(1-x^{2}\right)^{l}$ Thus the only term which has a non-zero value is where all of the derivatives hit one of the factors once. That give

$$
\begin{equation*}
\left.\partial_{x}^{l}\left(1-x^{2}\right)^{l}\right|_{x=1}=l!\left(\partial_{x}\left(1-x^{2}\right)\right)^{l}+\left.\left(1-x^{2}\right)(\text { some polynomial deg } 1-2)\right|_{x=1}=2!(-1)^{l}+0 \tag{17}
\end{equation*}
$$

Thus the standard scaling is

$$
\begin{equation*}
\tilde{P}_{l}=\frac{1}{2^{l} l!} \partial_{x}^{l}\left(x^{2}-1\right)^{l} \tag{18}
\end{equation*}
$$

These are called the Legendre polynomials.
The normalisation is

$$
\begin{equation*}
\int_{-1}^{1} \int_{0}^{2 \pi}\left(\tilde{P}_{l}(x)^{2} d \phi d x=\left(\frac{1}{2^{l} l!}\right)^{2} 2 \pi \int_{-1}^{1} \partial_{x}^{l}\left(x^{2}-1\right)^{l} \partial_{x}^{l}\left(x^{2}-1\right)^{l} d x\right. \tag{19}
\end{equation*}
$$

Doing l integrations by parts, we finally get

$$
\begin{equation*}
\left(\frac{1}{2^{l} l!}\right)^{2} \int_{-1}^{1}\left(x^{2}-1\right) \partial_{x}^{2 l}\left(x^{2}-1\right)^{l}=\left(\frac{1}{2^{l} l!}\right)^{2} 2^{2 l}\left(2^{l}\right)!\int_{-} 1^{1}\left(x^{2}-1\right)^{l} d x / /=\frac{2}{2 l+1} \tag{20}
\end{equation*}
$$

These then give the solutions for the $m=0$.
The solutions for $0 \neq 0$ are given by

$$
\begin{equation*}
\tilde{P}_{l m}=(-1)^{m}\left(1-x^{2}\right)^{|m| / 2} \partial_{x}^{\mid} m \mid \tilde{P}_{l}(x) \tag{21}
\end{equation*}
$$

where $\sqrt{1-x^{2}}=\sin (\theta)$ and again $x=\cos (\theta)$ Note that $|m|$ cannot be greater than l, since the $P_{l}(x)$ is a polynomial of degree 21 , and thus more than $2 l$ derivatives would equal 0 .

The normalisation is

$$
\begin{equation*}
\iint \tilde{P}_{l m}(x)^{2} d x d \phi=\frac{4 \pi(l+|m|)!}{(2 l+1)(l-|m|)!} \tag{22}
\end{equation*}
$$

Then

$$
\begin{equation*}
Y_{l m}(x \phi)=\sqrt{\frac{(2 l+1))(l-|m|)!}{4 \pi(l+|m|)!}} \tilde{P}_{l m}(x) e^{i m \phi} \tag{23}
\end{equation*}
$$

Note that the $P_{l m}$ are not orthogonal to each other, except for the same $|m|$ and different l.

I. RAISING OPEATOR

The operator

$$
\begin{equation*}
L_{+}=L_{y}-i L_{x}=-(x+i y) \partial_{z}+z\left(\partial_{x}+i \partial_{y}\right) \tag{24}
\end{equation*}
$$

is a raising operator the angular momentum. This operators equals

$$
\begin{equation*}
L_{+}=-e^{i \phi}\left(\partial_{\theta}+i \frac{\cos (\theta)}{\sin (\theta)} \partial_{\phi}\right) \tag{25}
\end{equation*}
$$

commutes with the angular operator

$$
\begin{equation*}
\frac{1}{\sin (\theta)} \partial_{\theta}\left(\sin (\theta) \partial_{\theta} \partial_{\theta}+\frac{1}{\sin (\theta)^{2}} \partial_{\phi}^{2}\right. \tag{26}
\end{equation*}
$$

and thus leaves $l(l+1)$ alone. The function $Y_{l,-l}(\theta, \phi)=N_{l,-l} e^{-i l \phi} \sin (\theta)^{2 l}$ is a solution to the angular equation with $m=-l$, where $N_{l,-l}$ is a normalisation factor.

$$
\begin{equation*}
\frac{1}{\sin (\theta)} \partial_{\theta}\left(\sin (\theta) \partial_{\theta} \partial_{\theta}\left(e^{-i l \phi} \sin (\theta)^{l}\right)\right)+\frac{1}{\sin (\theta)^{2}} \partial_{\phi}^{2} e^{-i l \phi} \sin (\theta)^{l}=(l(l+1)) e^{-i l \phi} \sin (\theta)^{2} \tag{27}
\end{equation*}
$$

If we operate on this function n times with the raising operator we get

$$
\begin{equation*}
Y_{l,-l+n}(\theta, \phi)=N_{l,-l+n}\left(-1^{n}\right) e^{i-l+n \phi} \sin (\theta)^{-l+n}\left(\frac{1}{\sin (\theta)} \partial_{\theta}\right)^{-l+n} \sin (\theta)^{2 l} \tag{28}
\end{equation*}
$$

Writing this with respect to $\xi=\cos (\theta)$ and setting $-l+n=m$ we get Rodriques formula

$$
\begin{equation*}
Y_{l, m}(\xi, \phi)=N_{l, m} e^{i m \phi}\left|1-\xi^{2 m / 2}\right| \partial_{\xi}^{l+m}\left(1-\xi^{2}\right)^{l} \tag{29}
\end{equation*}
$$

since $\frac{1}{\sin (\theta)} \partial_{\theta}=-\partial_{\xi}$. That factor can be absorbed into $N_{l m}$ or we can demand that $m=0$ has a $+\operatorname{sign}$, and then that sign factor becomes $(-1)^{m}$.

