1. Consider a tensor in 3-D $h_{i j}=\delta_{i j}$, and a coordinate transformation (where $\left\{x^{1}, x^{2}, x^{3}\right\} \equiv\{x, y, z\}$. Consider the coordinate transformation

$$
\tilde{x}=x \cos (\theta)+y \sin (\theta) ; \quad \tilde{y}=y \cos (\theta)-x \sin (\theta) ; \quad \tilde{z}=z
$$

where $\theta$ is a constant.Consider the following tensors

$$
\begin{aligned}
& T^{i}=\{1,2,1\} \\
& W_{i}=\{2,1,2\} \\
& H^{i}{ }_{j}=H^{1}{ }_{1}=1 ; \quad H^{2}{ }_{1}=-1 ; \quad \text { all others components } 0
\end{aligned}
$$

What are the components in the tilde coordinate system.
2. Given that the metric is

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \phi_{d}^{2} z^{2} . \tag{1}
\end{equation*}
$$

and the coordinates are $\left\{x^{1}, x^{2}, x^{3}\right\} \equiv\{r, \phi, z\}$, what is the inverse metric, the determinant of the metric, and the component of the anti-symmetric tensor $\epsilon^{123}$ Take $A_{i}=\left\{0, r^{2}, 0\right\}$ for $r<1$ and is $\{0,1,0\}$ for $r>1$, what are the components of $B^{i}$ where $B^{i}=\epsilon^{i j k} \partial_{j} A_{k}$.
3.Given the metric $d s^{2}=d x^{2}+d x d y+d y^{2}+d z^{2}$ what are the components of the metric, the inverse metric and the determinant of the metric? $\left\{x^{1}, x^{2}, x^{3}\right\} \equiv$ $\{x, y, z\}$

