1. Given that the metric is

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \phi^{2}+d z^{2} \tag{1}
\end{equation*}
$$

and the coordinates are $\left\{x^{1}, x^{2}, x^{3}\right\} \equiv\{r, \phi, z\}$, what is the inverse metric, the determinant of the metric, and the component of the anti-symmetric tensor ϵ^{123} Take $A_{i}=\left\{0, r^{2}, 0\right\}$ for $r<1$ and is $\{0,1,0\}$ for $r>1$, what are the components of B^{i} where $B^{i}=\epsilon^{i j k} \partial_{j} A_{k}$.
2. Given the metric $d s^{2}=d x^{2}+d x d y+d y^{2}+d z^{2}$ what are the components of the metric, the inverse metric and the determinant of the metric? $\left\{x^{1}, x^{2}, x^{3}\right\} \equiv$ $\{x, y, z\}$

B field in a vortex core looks approximately likes

$$
\begin{equation*}
B_{z} \approx B_{0}\left(1-A^{2} r^{2}\right) \quad r<1 / A ; \quad 0 \quad r>1 / A \tag{2}
\end{equation*}
$$

with all other components are 0 . Calculate the curl of this magnetic field. What must be the current in the superconductor to create this magnetic field.

Do it both in cylindrical polar coordinates z, r, θ whose metric is $d s^{2}=$ $d r^{2}+r^{2} d \theta^{2}+d z^{2}$ and in cartesian coordinates x, y, z, where the metric is $d s^{2}=d x^{2}+d y^{2}+d z^{2}$, and $x=r \cos (\theta), \quad y=r \sin (\theta)$ or $r^{2}=\left(x^{2}+y^{2}\right)$ Recall that curl B is the $\mu_{0} J$.

Which coordinate system is easier?

