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We explain and explore the connections among the following propositions: (1) thermal equilibrium is characterized by the KMS condition,
(A,_;sB) = (BA,); (2) finite-temperature Green functions are periodic in imaginary time; (3) black holes are hot; and to an accelerating observer,
empty space is hot. The KMS condition of quantum statistical mechanics is derived, with special attention to quantum field systems satisfying
relativistic commutation relations and linear field equations. We display the analytic structure of the two-point function and show in what sense the
KMS condition for such systems is a statement of periodicity. Then the application of these ideas to horizons in general-relativistic settings is
reviewed. Other matters discussed include: the identification of the analytically continued two-point function with the Green function of an elliptic
(**Euclideanized”) operator; the analogous relation between a nonrelativistic propagator and a parabolic operator; the construction of thermal
two-point functions as image sums; the (in)significance of time ordering; simplifications of the KMS condition in the presence of discrete

symmetries; the appearance of a “double” Fock space (artificially in general statistical mechanics, but naturally in space-times with horizons);

complications associated with the infrared behavior of the “particle” spectrum.
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1. Introduction

This article is an explication of the property of “periodicity in imaginary time” associated with states
of finite temperature in quantum many-body theory and field theory, which in recent years has attracted
much attention in connection with thermal effects related to black holes and “accelerated observers”
[78]. Since we deal primarily with basic mathematical issues, our article is complementary to the review
of Sciama et al. [78] (or the relevant chapters of the book of Birrell and Davies [7]), which is more
concerned with the physical origin and implications of the effects.

In nonrelativistic quantum statistical mechanics (many-body theory) it has long been known [69, 70]
that the Green functions, defined as finite-temperature expectation values of products of field
operators, possess analytic continuations in the time variable, whose boundary values at =0 and
t= *ip are related (essentially equal). “This relationship is crucial to all . . . Green’s function analysis”
[61]. This principle has penetrated various subcultures of physics in different forms. On the one hand, a
generalization of it to arbitrary observables [52] has become a central tool of rigorous quantum
statistical mechanics [59, 13], under the title of “KMS condition”. On the other, it has recently taken
root in special-relativistic quantum field theory (elementary particle theory) [14, S, 32, 90, 2, 73] and in
the general-relativistic quantum field theory previously mentioned [54, 49, 50, 35, 33, 34, 23, 80, 82].
The general-relativistic context is especially noteworthy because it provides a geometrical interpretation
of the periodicity, which in other applications arises as a mathematical fact without much of an intuitive
rationale.

Another formal mathematical property of thermal states of field or many-body systems is the
appearance of a “doubled” Fock space as the natural Hilbert-space representation [1, 86]. Amazingly,
this also has a clear geometrical origin in the general-relativistic settings [88, 60, 42, 65], which is closely
related to the analyticity considerations.

In a special historical category are the papers of Hoegh-Krohn et al. [57, 36] and Bisognano and
Wichmann [8, 9], which provide - or should have provided - bridges between the literature of mathe-
matical physics and that of general relativity. The relevance of the work of Bisognano and Wichmann,
particularly, to that of Unruh [88] et al. was not appreciated until very recently [80]. (We should note
that Ojima [73] draws on both the mathematical and the particle physics/statistical mechanics
traditions.)

Most of the recent work on finite temperature in relativistic theories has taken as a starting point the
well-developed literature of nonrelativistic many-body theory [e.g., 61]. The present authors became
aware of a simple, direct derivation of the analytic and periodic properties of thermal Green functions
in relativistic field theories, based on the local commutativity of the fields in analogy to the treatment of
vacuum n-point functions in axiomatic field theory [e.g., 85]. In addition to simplifying the development
of the theory, this observation allows its conclusions to be sharpened and strengthened. In particular,
nowhere in the existing literature have we seen a clear account of what happens at the boundaries of the
strips where the two-point function is analytic: In general there is a branch cut there (not just poles),
and the discontinuity across the-cut is equal to the commutator function of the quantum field.

We found other minor inadequacies in the physical literature; for example, the role of time ordering
is usually quite unclear. On the other hand, the mathematical literature on the KMS condition is of
little help in understanding the periodicity of the two-point function and its relation to the Green
function of an operator on a “Euclidean” space (that is, one with positive definite metric). Indeed, the
standard formulation of the KMS condition seems to state that a certain function of time is not periodic,
but rather “periodic with a twist”:
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<Ar—isB>B = (BA;>B 7 <A¢B>5 .

The resolution of this apparent inconsistency is related to the presence of the branch cut mentioned
above.

For these reasons we have prepared this expository article.

Section 2 is a detailed study of the two-point function of a scalar field with respect to states of zero
temperature (vacuum) and of finite temperature. The field is “free” in the sense that it satisfies a linear
field equation, but the formalism is broad enough to include external gravitational and magnetic
potentials and various boundary conditions; in particular, the situations studied by the general
relativists in connection with black holes and accelerating observers are covered. After a review of the
vacuum case, the two-point function corresponding to the grand canonical ensemble at vanishing
chemical potential and at temperature 1/ for a field theory in a finite region is constructed. Its analytic
structure and iB-periodicity are established, and also its connection with the Green function of a certain
elliptic operator subject to periodic boundary conditions. By taking a limit (‘“‘the thermodynamic
limit”), one obtains a function with these same properties which describes “finite temperature” for an
infinite system - for which the usual grand-canonical-ensemble density matrix does not exist. We also
discuss the “infrared problem” of fields whose normal-mode frequencies do not have a positive lower
bound; whether the thermal two-point functions exist in such a case depends on the system, in a way
linked to, but not determined by, the spatial dimensionality. Finally, we discuss the construction of the
thermal function as an ‘“‘image sum” of translates of the vacuum function.

In section 3 we turn to general quantum-theoretical systems and general observables, and derive the
standard KMS condition. Then we show that commutativity of two observables (for some interval of
time separations) enables one to extend the KMS function to an analytic, periodic function generalizing
the two-point function of section 2. For two-point functions themselves, consequences of symmetry
under charge conjugation and time reversal are investigated. We close with some comments on the
significance of time ordering.

In section 4 we briefly review how finite-temperature states arise when fields near geometrical
horizons are described in hyperbolic coordinates; this includes the famous cases of uniform acceleration
and of black holes (the Schwarzschild—Kruskal metric). The Araki-Woods double-Fock-space construc-
tion (also known as “thermo-field dynamics” after Takahashi and Umezawa), which arises here
naturally, is discussed. Since all horizon models have the infrared problem —even if the field is
massive - we investigate the existence of the thermal states carefully.

Appendix A is devoted to the formulation of nonrelativistic quantum statistical mechanics within the
framework established in the paper.

2. Relativistic ‘“free’” fields and elliptic Green functions
2.1. Definition of the physical system

We consider in detail a scalar field without self-interaction, in a geometrical setting sufficiently
general to encompass many situations of interest.

Let M be an n-dimensional Riemannian manifold. For notational convenience, pretend that M can
be covered by a single coordinate system, wherein the (positive definite) metric is given by
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2 j k
ds” =y, (x) dx’ dx (2.1)
(repeated Latin indices summed from 1 to n), and let

y=det(y,) . (2.2)

Define the scalar product
(6.0) = [ 6" 0x) ¥2) . 23)

The corresponding Hilbert space of square-integrable functions is denoted by L*(M; y''*) [or, when
necessary for clarity, by L*(M; y"'> d"x)].
Let K be the second-order differential operator (on scalar functions)

K=—-vy"x)[V,—i4,0]V, —i4, 0]+ V(x), (2.4)

where V is the usual covariant derivative associated with the metric (2.1), y’* is the corresponding
contravariant metric, and A and V are real-valued. We assume;

K, supplemented by (fixed but usually unspecified) boundary conditions
if necessary, is a self-adjoint operator on the Hilbert space determined by (2.3); (2.5)

The spectrum of K is nonnegative; (2.6)

Zero is not an eigenvalue of K (but may be the lowest point of the
continuous spectrum). (2.7

(To avoid technical issues we also assume that the coefficient functions in (2.4) are smooth, although
this is unnecessary for most of our considerations.) Our field will satisfy

—3’¢plot’ = K¢ (2.8)

along with canonical commutation relations.

We have particularly in mind these cases:

(1) Miis a region in R”, v, (x) = §,, A;(x) =0, V(x) = m’. Then ¢(¢, x) is the special-relativistic free
field of mass m in (n + 1)-dimensional space-time. If M is a rectangle

~L<x'<L, (0<L,=w), (2.9)

then a pair of boundary conditions must be imposed for each L; which is finite. If all L, are finite and
m =0, then purely periodic or purely Neumann boundary conditions would violate (2.7), but Dirichlet
conditions, for instance, are acceptable. If at least one L, is infinite, the spectrum is continuous.

(2) #=R XM is a static (n+ 1)-dimensional space-time with metric g,, dx" dx” (Greek indices
summed from 0 to n); (g,,)"'"'*¢ satisfies the covariant Klein-Gordon equation on .. Then (2.8)
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holds with A j(x) =,

ij(x) = ‘goo(x)_1 gjk(x) )
V(x) = g,y(x) m’ + curvature terms . (2.10)

[The covariant Klein—Gordon equation,

g4V, 6+ (m" + ER)S =0,
is equivalent (in a static () to

—3’¢lirr =K,

Ké =gulg ™" 98" "g"3,8) + (m’ + £R) §]. 211
K is not of the form (2.4). However, the conformal transformation

é=(g00)" "' (2.12)

converts the equation to (2.8) with K defined by (2.4) and (2.10). The metric vy in (2.10) has come to be
called the “optical metric”, because its geodesics are the paths of photons (the spatial projections of the
null geodesics of .#).]

External electrostatic potentials (A, 0) and external gravitational fields which are stationary but
not static ( g,; # 0) are not covered in this framework; they are best handled by passing to a first-order,
two-component formalism for the scalar field [e.g., 62].

2.2. The field operator and the vacuum state

Here we review the standard quantization of the scalar field satistying (2.8) [e.g., 11, 41, 43] and
show how its two-point function is related by analytic continuation to the Green function of the elliptic
operator

—d%as* + K (2.13)
on the manifold R X M. We treat ¢ as a charged field; the neutral (Hermitian) case is similar but
simpler.

We shall assume temporarily that K has purely discrete spectrum; in this subsection (in contrast to

the next) this is little more than a notational convenience. Accordingly, let ,(x) (v=1,2,...) be the
normalized eigenfunctions:

K, =oly,, (¢,9)=1, (2.14)

inf(w,) >0. Then the quantized field is

B(t,0)= 2 4,(x) 20,)"[exp(-iw,) a, + exp(in,) bl] (2.15)
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where a, annihilates a quantum, b' creates an antiquantum, and [a,, a’] = 8,

ys @, etc. [See also remark
containing (3.17).] If

v

t,—t =t, (2.16)

one has
[¢(tz’ x), ¢(t1’ »l=0,

[6(t,, %), ¢'(t1, Y] =[(¢, %), 670, Y] = 2 4,(x) ,(»)* 2w,) " (exp(=iw,f) - exp(iw, b)) ,
v (2.17)

[6(t,, %), (1, ¥)]=0  if (¢,, x) and (t,, y) have spacelike separation . (2.18)

(It is not obvious that (2.18) follows from (2.17); rather, (2.18) is a consequence of the canonical
commutation relations and the finite propagation speed of the hyperbolic equation (2.8) [e.g., 29].)

The field operator (2.15) is an operator-valued distribution acting on a Fock space generated by a
vacuum vector, |0}, annihilated by all the a, and b, . Since the field equation is linear, the vacuum state
is completely characterized by its (Wightman) two-point function,

Gi(t,x, y)= (0|¢(t2, x) ¢*(t1: »)|0)
= (0la(t, x) 6"(0, y)[0) = Z} ¥,(x) 4,(5)* 20,)" exp(—iw, 1) . (2.19)

[We have {0|¢(t,, x) ¢(t,, y)|0) =0 and the same for ¢" Also, (0|¢'(t, x) #(0, y)|0) equals
(0|¢(—t, x) $(0, y)|0)*; this expresses invariance under combined charge conjugation and time
reversal (see section 3.3).] It is convenient to define also

GZ(t, x, ) =019 '(t;, y) ¢(t, I0) = Z'l 0, (x) $,(9)* (20,) " exp(+iw,1) . (2.20)

Note that the commutator (2.17) equals G, — G~. The superscript “=” indicates that the vacuum state
has zero temperature, hence reciprocal temperature § =1/T =,
Now we introduce a complex variable

z=t+is, (2.21)

t and s real, and investigate the analytic continuations of G, off the real z axis. By virtue of the extra
exponential decay of the summand in the respective region, (2.19) with ¢ replaced by z defines a
holomorphic function in the lower half plane, and (2.20) defines a holomorphic function in the upper
half plane. The distributions G7 are the boundary values of these functions as the real axis is
approached from their respective directions.

Remark: The asserted exponential decay follows from the fact that the spectral function

E(x,y)= 2 4,(x) ¢,(x)* 2.22)

w, <A
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is polynomially bounded as A — . Indeed, under our assumptions on M and K it is known (44, 46, 58]
that E, (x, y) is of order A" (not only for an operator with discrete spectrum but also in the case of
continuous spectrum, which we consider later). For many solvable models (such as when M is a
rectangle and K is the Laplacian) this fact is well known and easily verified. It may be helpful to sketch
a few steps of the proof in the general case: First, one shows that the spectral projection E, has a
continuous kernel, E, (x, y). Invoking the Schwarz inequality for the sesquilinear form (f, E, g), one
then infers

|E,(x, ' < E,\(x, x) E\(, y) .

Thus one needs only consider E,(x, x), whose Laplace transform

f exp(—A’t) dE, (x, x)

is known to go like ¢,¢”""* for ¢ | 0. (This is the first term of the well-known heat-kernel expansion.)
The Karamata Tauberian theorem [91, section 5.4] then yields E, (x, x) ~ ¢,A" for A— .

If x # y, then the separation of (¢,, x) and (¢, y) will be spacelike for sufficiently small ¢ in (2.16)
(namely, ¢ less than d(x, y), the distance between x and y in the metric v, ). Thus (2.18) implies that

Gi(z,x,y)=GI(z,x,y)

for z on a certain interval (—d <t<d) of the real axis. By the one-dimensional edge-of-the-wedge
theorem (85, section 2.5], therefore, each of these functions is an analytic continuation of the other.
That is, for fixed, unequal x and y there is a single holomorphic function, 4(z, x, y), defined on a
connected region of the complex plane (see fig. 1), such that

Gi(z,x,y) if Imz<0,

¥z, y)z{Gf(z,x, y) if Imz>0, (2.23)

and both equalities hold if Im z =0 and |Re z| < d. In general there will be branch cuts along the real
axis from z = +d to z = o, ’

Now consider the values of 4¥7(z, x, y) on the imaginary axis. If z =is, then from (2.23) and
(2.19-20) we have

G5, %, )= §7(is, %, 9)= 2 ,() 4,(1)* 20,) " exp(-w,s]) . (2.24)
Thus, we can also write
G, %, 0)=0m" 2 [k, 1,0 explikess) w,(3)" explibs) (62 + o) (2.25)

where s, and s, are real numbers such that s, —s, =s. G” is often called the “(two-point) Schwinger
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AS

Fig. 1.

function” of the scalar field ¢. It is clear from (2.25) [recall the normalization (2.14), (2.3)] that G” is
the integral kernel of the inverse of (2.13) (viewed as an operator on L*(R X M;y'/? ds d"x)).
Equivalently, G™ may be characterized as the Green function of (2.13), acting on R X M. That is, G is
the unique solution to

(—9%9s5+ K)) G = 8(s, — 5,) 8(x = y) ¥(y) ™" (2.26)

which decays as |s|— .

Consequently, if one starts from the Green function G”(s, x, y) of the elliptic or “Euclideanized”
problem, then by analytic continuation in s one can reach either of the space-time Wightman functions
G’ (t,x, y) and GZ(t, x, y) — which are solutions of the related homogeneous, hyperbolic equation

(+3%96;+ K,))GZ =0. (2.27)

From fig. 1, reoriented, one sees that G, is obtained by approaching the imaginary s axis from the left,
G_ by approaching from the right.

Note that up to now we have said nothing about time ordering. The time-ordered (Feynman)
two-point function is

Gitx,y) if t,>t,

G:(t7 X, y) = <0|‘07[¢(t2’ x) ¢T(t1’ .Y)”O) = { ch(t, X, y) lf t2 < tl : (228)
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J . ..] denotes the product of field operators ordered with time arguments increasing to the left. G
can be obtained from G” by a rigid rotation of the domain from the s axis to the ¢ axis in the direction
indicated by the curved arrows in fig. 1:

Gyt x,y) = G(=it,x, y) = 2 4,00 4,()" 2w,) ™" exp(-ia, ) (229)

It is only in this sense that G, has any closer relationship than the other Minkowski two-point functions
to the Euclidean Green function, G,

If K possesses some continuous spectrum, then the sums over » in the preceding are replaced by
Stieltjes integrals with respect to a spectral function E, generalizing (2.22) [45]. The only essential
complication arises when zero is a limit point of the spectrum, as is expressly allowed by (2.7).

We shall now illustrate this and the preceding developments by considering the free scalar field in flat
space-times. First look at Minkowski space, R‘=R""", and K=-V>+ m’ acting in R”. Then the
Schwinger function (2.24) becomes

G (is, x, y) =S, ([s" + (x = y)]"5m?) (2.30)
S (r;m*y=(2m)™* j dk exp(ik- x) (K> + m*) " (2.31)

[In (2.30), xER"; in (2.31), x ER’ and r=|x|.] For fixed x # y, one can read off the behavior of
%”(z, x, y) on the cuts from this. Recall that for m >0 and d even, S, is a combination of powers and
modified Bessel functions, and for d odd it is a combination of exponentials and powers; in particular,
S,(r;m?) is a multiple of the Yukawa potential, 7' exp(—mr). Thus the only singularities on the
Riemann surface of ¥” are the points z = *|x — y|, and these are either infinite- or first-order branch
points. Also,

S,(r;0)ecr ™ ifd>2,

so that one gets square-root branch points for m =0 when »n is even. However, when n=3,5,7, ...,
there is only one sheet, since the two singularities reduce to poles. Note that this is equivalent to the
commutator’s vanishing in the timelike region (Huygens’s principle).

For m=0 and d=2 (or d=1) one has a nonintegrable singularity at the origin in (2.31). The
implications of this for two-dimensional quantum field theory have been discussed in [77, 92 (section 4),
31]. The divergence reflects the fact that “1/k”” defines a distribution only on test functions whose
support (in k-space) does not include the origin. There are infinitely many ways to extend it to arbitrary
test functions. These extensions correspond precisely to the various choices of a fundamental solution
for the Laplacian in dimension 2. Recall that for d >?2 the fundamental solution is uniquely determined
by requiring that it decay at o, but for d =2 no such solutions exist. One may take, e.g.,

$,(r;0)= — % ln(%) (2.32)

for an arbitrary length R, but no choice of R produces decay. More to the point for field theory, no
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choice of R gives S, the positivity property necessary for reconstruction of field operators, in a Hilbert
space with positive definite metric, defined on all smooth test functions.

There is a spectrum of attitudes one may take toward this situation. Conservative: An infrared
divergence in the formal expression for the two-point function indicates that no quantum field theory
exists; the model is inconsistent. Radical: The state space of such a system has an indefinite metric, and
one must learn how to make physical sense of such a situation. Liberal: A quantum field theory exists,
in a genuine Hilbert space, but the field operators are not defined for all test functions. We adopt the
liberal point of view. Within that framework there are two policies one could adopt toward the
two-point function: (1) No two-point function exists for such a theory. (2) As two-point function one
may choose any “regularization” (i.e., an analogue of (2.32) for the model in question), remembering
that its value on the illicit test functions is irrelevant to physics. The choice between (1) and (2) is
perhaps a matter of taste and semantics; we shall adopt the former, because it relieves us of any
obligation to discuss technical issues connected with regularizations, and because “the two-point
function does not exist” is a convenient way to refer to the infrared pathology in passing.

The examples just discussed show that the presence of zero in the continuous spectrum is a necessary
but not sufficient condition for the infrared pathology. To explore this subject further, let us now
consider the rectangles (2.9) with m=0. Suppose that L= for j=1,...,J and L;< for
j=L+1,...,n. Then (2.25) becomes (with x’=5s,, y —sl)

0

G(s, x, y)=(2m) V™D f dk f dk, >, -2 H L)

e kjiq k, j=J+1

X exp(i 2 ij’> exp(—i EO k].yf> (20 k'j'.>_ : (2.33a)

where the precise spectra of the discrete variables k,_,, . . ., k, depend on boundary conditions. Each
of these will take on the value k; =0 if the corresponding boundary conditions are of the periodic or
Neumann type. Therefore, the integral (2.33a) will be infrared-divergent in those cases (even after the
implicit smearing with smooth test functions, which handles any problem at the ultraviolet end) if and
only if J= 1. (The case J =0 has been ruled out by (2.7).) The same observation applies to

G™(s, x, y)=(2m)~’ f dk, -+ f dk, 2 -+ 2 Il @L)™

kyiq k, j=J+1
n ) ) 1 n -1/2 n -1/2
X exp[i 2 ki - y’)] 5 (2 ki) exp[~(2 ki) |s|] , (2.33b)
j=1 j=1 j=1

corresponding to (2.24), and to the corresponding formulas (2.19-20) for G. So the two-point
function fails to exist, in either the physical or the Euclidean domain, for the massless scalar field in
two-dimensional Minkowski space (J = n = 1), as already mentioned, or in an infinite cylinder of square
cross section in four-dimensional Minkowski space (J=1, n=3) with boundary conditions of the
indicated types, etc.

In general, infrared convergence is governed by the behavior as A | 0 of the spectral function,
E,(x, y). In concrete cases which can be solved by separation of variables, this can be investigated
rather directly (see section 4.3).



146 S.A. Fulling and S.N.M. Ruijsenaars, Temperature, periodicity and horizons

Remark: The crux of the infrared-convergence issue is the following [cf. 40 (p. 247), 62, 43]: The
two-point function will exist, as a distribution in (x, y) with ¢ fixed, if and only if the field operator is
defined as a distribution in x on test functions in the corresponding space, say C,(M). From the field
expansion (2.15) generalized to continuous spectrum, one sees that f(x) is an acceptable test function
for ¢ if and only if the spectral transform

o fwy= o [ n " ) v d (2.34)

is an acceptable test function for the canonical annihilation and creation operators, a( ¢) and b(g). But
in the Fock representation those operators are defined precisely for functions g(w) which are
square-integrable. Thus one needs f to be in the domain of K “* as an operator in the Hilbert space
L*(M; y'"?). Infrared divergence occurs when not all functions in Cj(M) belong to dom(K™''*).
Elementary power counting shows that this criterion is consistent with our conclusions above for the
massless free field in rectangular regions. Comparing (2.34) with (2.24) or (2.19-20), one sees how this
connection will extend to the general case; we return to this in a remark in section 2.4.

2.3. Thermal states ““in a box”

The thermal equilibrium state of temperature T corresponding to a time-independent Hamiltonian H
is customarily defined by the Gibbs formula

(A), =Tr(e P"A)/Tr(e ") (2.35)
for the expectation of an observable A, where
B=1/T. (2.36)

(We adopt units where Boltzmann’s and Planck’s constants are equal to unity.) However, for the
numerator and denominator in (2.35) to be separately defined, it is essential that ¢ "*" be an operator of
trace class. That is, H must have purely point spectrum {E_}, and the convergence condition

Z=Tre™*")= 2, e Prr< (2.37)

1

L

must be satisfied. Thermal states for more general systems may be definable as limits of the states of
form (2.35) of approximating systems with finite Z.

For the relativistic system with equation of motion (2.8), the Hamiltonian H is the second-
quantization of K'’2 It is well known [e.g., 44, 24, 58] that if M is compact (with or without boundary),
then the differential operator K (2.4) has a discrete spectrum and the number of eigenvalues less than
or equal to A? asymptotically approaches a constant times A"; thus the trace condition (2.37) is satisfied,
as shown below.

Remark: If M is not compact, then (2.37) may diverge even if the spectrum is discrete. If
K =-V*+V(x) on R” with V(x)—> + as |x|— =, then [75, 24] the number of eigenvalues less than A*
is asymptotic to
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const. f [A*=V(x)]"*d"x. (2.38)

V(x)<a?

If V(x) approaches « sufficiently slowly, then (2.38) grows arbitrarily rapidly — hence possibly faster
than exponentially, so that (2.37) diverges. (On the other hand, the local spectral function (2.22)
satisfies a polynomial bound, under very general conditions on V, so (2.43) and (2.50) will converge for
such systems. This qualitative difference between the local and global spectral asymptotics is explained
by the observation that normalized eigenfunctions of large eigenvalue w’ will typically be small
everywhere except near the “turning manifold” V(x) =~ w?, which recedes to infinity as w, increases.)

Accordingly, in the general case one starts by “cutting off” M by inserting a boundary, JA, whose
interior A is compact. At the end (see section 2.4) one investigates the limit of (2.35) for a nested
sequence of such “boxes” A whose union is all of M. Care must be taken to ensure that the cut-off
systems satisfy (2.5-7). This can be done for many models by imposing the Dirichlet boundary
condition on JA — dM.

We now define thermal two-point functions by inserting the product of two fields into the formula
(2.35) in the role of A:

GA(t,x, y)=Z " Tr[e ™" ¢(t,, x) &'(1,, ¥)]
=Z " Tr[e " ¢(1, x) (0, y)] (2.39)

(where t=1t, — ¢, as always), and similarly
GE(1,x,y)=Z""Trle™ $'(0, y) ¢(t, x)] . (2.40)

For our field-in-a-box these quantities exist in the Fock representation and can be evaluated from
(2.15): From (2.37),

)

Z= 2 exp[—ﬂ 2 (n,+n) wy]
nyngy, ... =0 v=1
Ay, .. =0

(where n, and n, are the numbers of quanta and antiquanta in mode »)
0 0 2 5]
=T S e =TT (1-expl-p0,)
= v=1

v=1tn, =

= exp[~2 > In(1- exp(—Bwy))] = [det(1 - exp(-BK "] *.
v=1
The series is convergent, since K was constructed so that w, >0 and X;_, exp(—Bw,) <. Thus
z7' =11 (1 - exp(-pw,))’ (2.41)
v=1

for a charged field. For a neutral field the exponent 2 is absent. Also,
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alln, n

(af,av)ﬂ—=-Z_1Tr(e_BHa1aV)=Z‘1 > exp[—B > (n#+ﬁ”)wu]ny
n=1

=(-exp(-Bo,) 3 n, exp(~pn,a,) = ~(1-exp(~,) 0,' 7 3 exp(~pn,)

whence
(ala,), = exp(~Bw,) (1 - exp(-Bw,)) ', (2.422)
(a,a}) =1+ (ala,), =(1—exp(-Bw,)) . (2.42b)

Identical equations hold for b,. The other combinations, (a,a,.),, (a,a,),, (a,b}),, etc., are zero.
Thus, finally,

G2 x, )= 2 0,00 4,(3)° (2@,) [exp(—iw,1) (a,a,) , +explio, ) (b1b,),].

with a similar formula for G_; hence

G269 = @) ()" (20" (1~ expl—Bo,)
 [exp(Fia, 1) + exp(ia, ) exp(—w, B)]. (2.43)
As a check, note that
G2 (1, %, ¥)— G2(6,x, ) = [6(5,x), (0, )] (2.4

is consistent with (2.17).
Now let us set z =1t +is. Since the factor

q.(z)=exp(—iw,z) + exp(io, (z +iB)) (2.45)

decreases exponentially with w, if (and only if) —8 <s <0, (2.43), with ¢ replaced by z defines a
holomorphic function

Gi(z,x,y) for —B<Imz<0. (2.46a)
Similarly, (2.43)_ yields a holomorphic extension

G%(z,x,y) for 0<Imz<§p (2.46b)
corresponding to the function

g_(z)=exp(io,z) + exp(—iw, (z —iB)). (2.47)



S.A. Fulling and S.N.M. Ruijsenaars, Temperature, periodicity and horizons 149

When x # y, for exactly the same reason as in the zero-temperature case, G® and G* are analytic
continuations of each other through a window in the real axis as in fig. 1. Furthermore, from (2.45) and
(2.47) one has

q.(z-iB)=q_(2), (2.48)

which means that the function in the upper strip, (2.46b), is an exact copy of that in the lower strip,
(2.46a). Therefore, the process of analytic continuation can be repreated indefinitely in both directions.
The result is a function $”(z, x, y) which is holomorphic in the z plane except for horizontal branch
cuts from Re z = £d(x, y)to Re z=xx at Im z = NB (N =0, %1, . . .); see fig. 2. The function satisfies
the periodicity condition

%(z +iNB, x, y) = ¥(z, x, y) for all integers N . (2.49)
[If z is on one of the cuts, one must distinguish the limiting values of ¢ from above and below the cut.
Equation (2.49) is still valid for these boundary values, but to interpret it correctly one must remember
the necessity of “‘jumping over” a cut. See also section 3.3.]
The analogue of (2.24) is
G®(s, x, y) = 9°(is, x, y)

= 21 ¥,(x) ¢,()* (2“’y)_1 (1- ‘”‘P(—[‘}w,,))—1 [exp(—w,s) + exp(+w,(s — B))]

if 0<s<pB. (2.50a)
As
[ L
1 I
B
G
! _..B — -
.' ' -
Gy
G§ -d d cP t
| 4 i _
] L —>
B : B
G+ (;+

1

T

1

Fig. 2.



150 S.A. Fulling and S.N.M. Ruijsenaars, Temperature, periodicity and horizons

[Replacing s by |s| in the final bracket, one gets an expression valid for — B <s < B; see (2.43). Thus
G" is even in s, just as in the T =0 case. Note that its periodicity (2.49) then implies that it is also
symmetric with respect to reflection at the lines Im z = (N + 1)B.] We claim that G is the solution of
(2.26) which satisfies G®(s + B, x, y) = G*(s, x, y); that is, G” is the Green function for the elliptic
operator (2.13) acting on a “cylinder” S’ x A of circumference B! The eigenfunction expansion of that
Green function, parallel to (2.25), is (for 0<s, —s, <f)

- x o . 2 2 -1
G e =87 S 3w exprinsyB) v, ()" exp(-2mins 8) | (22) + 0]
py=1 n=—%
(2.50b)
So the proof of the claim reduces to the verification of
S 2an\’ 2 - . -1 —Bwy—1 . ~ws w(s—B)

> B + o exp(2mins/B) = BLw)” (1—e ") [e +e ]  for 0<s<B.
(2.51)

The coefficients of this Fourier series can be verified by an elementary integration.
As in (2.28-29), a time-ordered thermal two-point function can be defined, which satisfies

Gt x, y) = GH(=it, x, y) ; (2.52)

that is, the real axis is approached from above if +<0 and from below if 1> 0. Note that it may be
written

Gelt, x, y) = G2(t, x, y) + (1) [6(1, %), (0, y)]. (2.53)
Hence, it satisfies the inhomogeneous wave equation

(97108 + K, ]G = —i8(r) 8(x — y) ¥(y) ' . (2.54)
2.4. Thermal states in the whole space

We now consider taking the box, JA, away to infinity. It is natural to expect— although not
obvious — that G* for S' X A will converge (as a distribution) to the corresponding Green function on
S' X M. [This would show, in particular, that the limit is independent of the shapes of the boxes in the
particular sequence of boxes chosen. Similarly, one expects the same limiting result if the Dirichlet
condition on JA is replaced by any condition maintaining self-adjointness and positivity.] For the Green
function on S' XM formulas (2.50) still apply, if the sum is replaced by the appropriate Stieltjes
integral; the corresponding generalizations of formulas (2.43) remain meaningful; and the argument
leading from (2.43) and (2.44) to (2.50) can be reversed. Thus G* on S' XM has an analytic
continuation to two-point functions G? (and G¥) on the space-time R X M, which can be used to define
the thermal equilibrium state for temperature 1/8, and the master analytic function ¥ for that system
will exhibit the periodicity (2.49).

This state, as a functional on the fields, is not realized as a density matrix in the Fock representation
(unless exp(—BH) was already a trace-class operator before the cutoff was introduced). It can be
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realized as a vector state in some other representation by a construction of the Wightman type [e.g., 85,
chapter 3]. (Usually in the literature the smeared fields are exponentiated to form bounded Weyl
operators [cf. 1] and the GNS (Gel'fand-Naimark-Segal) construction is applied (see, e.g., [59] and the
articles by B. Simon and P.J.M. Bongaarts in the same book).) This construction can be carried out
even if exp(— B H) is of trace class, as when M is compact. In that case the thermal state is realized both
as a vector state in the (reducible) GNS representation and as a density-matrix state in the (irreducible)
Fock representation.

If the spectrum of K (and hence K, ) extends down to 0, the integrals corresponding to (2.43) and
(2.50) may or may not be infrared-convergent, as we shall demonstrate presently. In any event, the
argument we have just given breaks down in that case. It may be possible to obtain its conclusion - in
the cases where G* is defined — by direct analysis of the mode of convergence of the spectral functions
as the cutoff is removed, but we have not attempted to do so. Instead, we shall investigate the formulas
(2.43) and (2.50) directly, in various cases of interest. The most interesting cases are those associated
with cosmological horizons (including those resulting from acceleration); they are treated in section 4.
Here we take a look at the simpler cases of the massless scalar field in flat rectangles, whose vacuum
states were described at the end of section 2.2.

First consider the case where M is all of R” and K = -V + m” Then [the continuum analogue of]
(2.50b) can be written

-1

GP(s,x, y)=Qm) B! 'gw exp(2mijs/B) f d"k exp{ik - (x — y)} [(%)2 +k+ mz] . (2.55)

The right-hand side can just as well be regarded as the T =0 Schwinger function for M=S§' X R"™,
where S' has circumference 8; we return to this observation shortly. One may also write

0 w2
G*(s,x,y)=B" 2 exp(2mijs/B) S,,(|x -yl; (2772]) + m2>.

j=—w

(2.56)

For m =0, (2.56) exhibits the fact that the Green function is not defined unambiguously for n =1 or 2
and that this is due solely to the constant mode with respect to s; cf. (2.32), etc. Correspondingly, the
continuous analogues of (2.43) and (2.50) are infrared-divergent for n =1, 2.

For the more general rectangles, G is given by a formula like (2.33a), except that k, is now a
discrete variable taking on the values

2wnlB (n=0,%1,..)
as in (2.50b). The argument following (2.33a) therefore shows that in the thermal case one has infrared
divergence whenever J, the number of ‘“‘continuous” dimensions, is equal to either 1 or 2. [From
(2.50a), the integrand of the analogue of (2.33b) involves a factor

~k7'1~ePY T ~B %P as k0, (2.57)

where

J 1/2
k=(2 )
j=0
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is the radial coordinate in the continuous part of the wave-vector space. This also shows that J =3 is
needed for convergence.] Thus there are no finite-temperature equilibrium two-point functions (with
vanishing chemical potential) for the massless free field in three-dimensional (or two-dimensional)
Minkowski space-time, nor for the four-dimensional massless field in an infinite slab with Neumann
conditions on its parallel plane faces, etc. We emphasize that the problem with the thermal states of the
massless field in space-time dimensions 3 and 2 is of precisely the same nature as the pathology of the
vacuum state of the massless field in dimension 2, which is by now well understood. In general, the
infrared behavior of a theory at finite temperature is analogous to the zero-temperature situation in one
lower dimension [66; 26 and references therein. ]

Remark: One formulation of the criterion for existence of thermal two-point functions is: The Cj test
functions must belong to the domain of the operator K~ (For the vacuum state, the test functions
need only belong to dom(K ~''*), as remarked at the end of section 2.2.) Infrared convergence, in each
of various contexts, requires that the test functions belong to the quadratic-form domain of a certain
operator R(K); such formulas as (2.19), (2.24-25), (2.43), (2.50), when smeared with test functions,
are the spectral representations of these quadratic forms. We have R(w)~w ' for B =% and
R(w) ~ » * for finite B. Since multiplication by w” is the spectral representation of K, this means that
the crucial space is the form domain of K ~''? for 8 = and the form domain of K ' for finite 8. The
extra square root comes in in passing from quadratic-form domains to operator domains.

Finally, we have noted above that the elliptic Green function (2.55) corresponding to a free field in
R" at temperature 1/8 is the same, up to a relabeling of axes, as that corresponding to the vacuum state
of the field when one of the spatial dimensions is periodic with circumference B [e.g., L, = B/2 in
(2.9)]. This observation extends to interacting fields ([57]; cf. “Nelson’s symmetry” [83, chapter 6]).
Presumably related is the fact that the formula for the energy density of black-body radiation of fields of
various spins is essentially the same as the formula for the “Casimir’” energy density in spatially finite
universes [84, 38, 16, 17]. Cf. remarks of Candelas and Dowker [18].

2.5. Image sums

The representation

©

Pz, x,y)= 2 47(z+iNB,x,y) (2.58)

has been exploited in much of the literature [e.g., 14, 34, 6]. It arises in the first instance from the idea
that the elliptic Green-function equation (2.26) with periodic boundary conditions in s should be
solvable by summing the contributions of “image charges” at s = Ng in the “unrolled” manifold R X M:

G%s,x,y)= Ew’, G*(s+NB,x, y). (2.59)

N=—cx

Does the series (2.59) converge? If K is the Laplacian on R’ then G is the Green function of the
Laplacian on R’ better known as the Coulomb potential. The terms in (2.59) therefore decrease only as
|N |_1, and the sum diverges. Note, however, that for this case we already determined that no thermal
two-point function exists. (A classical Green function on the cylinder does exist [cf. (2.32) and following
discussion], but it does not have the positivity property needed for the Wightman reconstruction, and it
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cannot be constructed as an image sum. Are these two properties linked in general?) If K is the
Laplacian on R’, J>2, then G”(s,x, y) decreases like r'~’ [r=(|]x — y|*+s%)"*], and the sum
converges. We have convergence also for the massive free field in any R”, since G” then is damped by a
factor exp(—mr); this can be generalized to most operators of the form (2.4) on R" that possess strictly
positive spectrum [51].

A systematic study is more easily carried out in the spectral representation. We can write

P59 = [ AE () P 0)  (B=w), (2.60)
where
o G7(z,w)=Qw) e for s<0,
= . 2.61
% (Za w) {Gi(z, w)=(2w)—le+lmz fOI' s>0’ ( )

and 9(z, w) for finite B is a periodic function of period i, determined by either of the equations
4Pz, 0) =GP (z, 0)= Qo) ' (1-e ) (™ +e“" ) for -B<s<0, (2.62a)
4Pz, 0) =GPz, 0)= Qo) ' (1-e ) " +e ™ e™®) for 0<s<B. (2.62b)

[See (2.23), (2.19-20), (2.46), (2.43). The spectral function E,(x, y) is given by (2.22) when the
spectrum is discrete, and it can be constructed more or less explicitly whenever the field equation can be
solved by separation of variables. ]

From (2.61) and (2.62b) we obtain for 0<Imz <

i e‘“‘“’]

M=1

> 9°(z+iNB, w)=(2w)—1[ei"’z D, e NBe 4 gz
N=0

N=—»
=(2w) e (1-e™P)  +e T e Pl - e'ﬁ‘”)_l] =4%(z, 0).

Since the extreme members of this equation are periodic, we have

GP(z,0)= 2 9°(z+iNB, w) (2.63)
N=—w
(absolutely) for all z with Im z not an integral multiple of B. Across the lines Im z = NB, 4°(z, ») is
discontinuous, with jump equal to the spectral transform of the commutator (2.17),

—io'sin wt. (2.64)

To establish (2.58) it is necessary to justify an interchange of the integration-summation over  in
(2.60) with the summation over N in the integrand, (2.63). We restrict attention to Im z # N, so that
the o integrations themselves will converge in a classical (not merely distributional) sense. In view of
the polynomial bound on the spectral function, we have no problem at the ultraviolet end, hence (2.58)
is certainly true when the spectrum of K is strictly positive. When the spectrum extends down to 0, we
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have seen in section 2.4 that there are cases where (2.60) for 8 <« is divergent, hence the left-hand
side of (2.58) is undefined, although every term on the right-hand side is defined, since (2.60) for g =
is convergent. Let us consider the contrary case: %” exists and the infrared part of its spectral
representation,

A
[aE oy a-esy v e
0

*iwz

converges. (Here A is an arbitrary positive number, and we take 0 <s < B.) The factors e are not
responsible for this convergence, so the infrared convergence in (2.60) is absolute and (2.58) follows. It
is not clear whether the converse holds: Does convergence of the right-hand side of (2.58) guarantee
that 9" exists in the sense discussed in section 2.4?

The representation (2.58) enables one to read off the analytic structure of ¢” from that of §”; note
that this leads again to fig. 2. The flat case considered before illustrates the fact that the Riemann
surface of ¥” has infinitely many sheets whenever ¢ has more than one sheet.

One may reformulate (2.58). as

G°(t,x,y)= 2 G°(t+iNB,x,y),
N=—x

where the * stands for F, + or —, but such equations are sure to be misleading to one who is not fully
aware of the analytic continuations, branch cuts, and distributional limits implicitly involved.

Remark: The rightmost member of (2.62a) or (2.62b) defines an entire function, which is not.
periodic. The values of each such function outside its proper strip are irrelevant; its spectral transform
may not even converge outside that strip. A more elementary example of this phenomenon is provided
by the function

[cosh(x +2m7z/B)] ",

which is clearly iB-periodic in z. For |Im z| < /4, its Fourier transform is unambiguous, and given by
eiZﬂzp/B

cosh wp/2~’

but the analytic continuation to arbitrary z of the latter function is not periodic in z.

3. General quantum statistical systems: The KMS condition
3.1. Derivation and significance of the KMS condition

Consider an arbitrary quantum-mechanical system with time-independent Hamiltonian H. If A is an
observable, its time evolution in the Heisenberg picture is

A =efqe™™ . (3.1)
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If e ¥ (for some B >0) is of trace class, one can define the equilibrium state of temperature
T=1/B:

(A),=Z7"Tr(e "), (3.2)
Z=Tre "7, (3.3)

In manipulating expressions of form (3.2), one makes extensive use of the facts that Tr(0,0,)=
Tr(0,0,) and that any two functions of H alone commute.
For two observables, A and B, we define

G%(1, A, B)=(A,B),
=Z 'Tr[e "7 e""A e " B]
=Z ' Trfe ?AeBe"]=(AB_,),. (3.4)
In fact, for any ¢, and ¢, such that ¢, — ¢, = ¢ we have
(A,B )= G%(t, A, B). (3.5)
Similarly, we define
G®(t, A, B)=(BA,),
=Z 'Tr[e "B e"Ae™"]
=(B_A),=(B,A,), ift,-1=t; (3.6)
thus

G*(1, A, B)=G*?(-t,B, A). (3.7)

Remark: If A or B is unbounded, the foregoing expressions may not be well defined. In particular,
e #" A is no longer of trace class in general. (For example, 4 could be e*?".) Therefore, in general
discussions one usually assumes A and B to be bounded operators. Nevertheless, the formalism is
applicable to thermal two-point functions in a box, in spite of the fact that the field operators are
unbounded. This hinges on the fact that operators like ¢ #"a’a, are of trace class, as we have seen
explicitly in section 2.3.

Equations (3.4) and (3.6) can be rewritten as
GP(z, A, B)=Z""'Tr[e'“"®H Ae™" B], (3.8a)
GP(z,A,B)=Z""Ti[Be"" A CT®H] (3.8b)

Now z can be interpreted as a complex variable. If z =t +is, then both exponents in (3.8a) have
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negative real parts if —f <s <0; for (3.8b), the condition is 0 <s < 8. Therefore, these two formulas
define holomorphic functions in those respective strips. G2(t, A, B) are their boundary values.
If 0=<Imz=<p, then

G*(z,A,B)=G"(z—iB, A, B). (3.9)

Indeed, replacing z by z —iB in (3.8a) and cyclically permuting the factors inside the trace yields (3.8b).
For z =t, (3.9) can be formally written

(BA,)p=(A_sB),, (3.10)

t—iB
but neither its derivation nor its applications require that (3.1) define an operator A, for nonreal z. (In
general it does not.)

Condition (3.9) or (3.10) is called the KMS condition, after Kubo [69] and Martin and Schwinger
[70]. It can be given a precise sense in terms of C*- and Von Neumann algebras and their states for
systems for which Tre *" diverges (e.g., noninteracting spatially infinite systems). In this context it is
now accepted as a definition of “thermal equilibrium at temperature 1/8” following Haag, Hugenholtz
and Winnink [52]; see also [53, 79, 81, 67]. For some systems (particularly many infinite, interacting
systems at low temperatures), (3.10) does not uniquely determine the state. This can be physically
interpreted as the existence of more than one thermodynamic phase at that temperature. For detailed
expositions of this subject, see [59] and [13, chapter 5].

3.2. Periodicity

The KMS condition obviously is related to the periodicity property of thermal two-point functions,
(2.49); nevertheless, (3.9) and (3.10) as they stand are not statements of periodicity. We aim here to
clarify this relationship.

Two analytic functions, G, and G_, have been defined in disjoint, adjacent strips, just as in (2.46).
Moreover, (3.9) states that one of these is the translate of the other. Therefore, we are free to define a
periodic function throughout the complex plane, with the possible exception of the lines s =Im z = NB,
by

9%(z, A,B)=G*®(z, A,B) for 0<s<@, (3.11a)
%"(z, A,B)=G*(z, A,B) for —-B<s<0, (3.11b)
and, in general,
9%"(z, A, B)= G®(z —iNB, A, B)
=G%(z-i(N-1)B, A, B) (3.11¢)

for an integer N appropriate to the strip wherein z lies. % satisfies (2.49). But this construction does not
have terribly much content in the most general case: ¥; is not in general analytic on the real axis, and
hence the functions defined in the various strips are unrelated except for the periodicity which has been
imposed by fiat.
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Suppose, however, that A,B = BA, for all ¢ in some open interval I of the real axis. Then the
boundary values of G2(z, A, B) coincide on I, and just as in section 2 one can conclude by the
edge-of-the-wedge theorem that G% are restrictions of a single holomorphic, periodic function,
%"(z, A, B), defined in a connected region making up all of the complex plane except parts of the lines
s=NB. (In fact, in this case of bounded observables the desired result follows from the more
elementary theorem of Painlevé [85].)

If A B+ BA,=0on I, one can modify the definition of ¢” so that

%"(z, A,B)=-G*(z,A,B) for 0<s<g,
obtaining an analytic function which is antiperiodic:
$P(z+iB, A, B)=—-%%z, A, B)

(hence periodic with period 28). In particular, on this basis the theory of thermal states of Fermi fields
can be built up in parallel to section 2.

In relativistic field theories, the commutativity (or anticommutativity) of fields or observables at
spacelike separations thus allows the construction of master holomorphic functions embodying the KMS
condition as a periodicity property in imaginary time, as we demonstrated in detail for noninteracting
scalar fields in section 2. This procedure does not apply to nonrelativistic quantum theory in the
formalism of second quantization, since there the field operators at different times cannot be expected
to commute anywhere; one has for all x and y the situation found in the relativistic case only when
x=y. Thus the nonrelativistic case, which historically was studied earlier, is, in a sense, more
complicated then the relativistic case! Understandably, much writing about finite temperature in
relativistic theories has been based on transcriptions of results and arguments already known for the
nonrelativistic case. The simple, powerful analytic structure of the two-point functions in the relativistic
case has thereby been obscured in the literature. It is instructive to develop the nonrelativistic theory of
thermal Green functions as far as possible along the lines adopted here for relativistic fields; we do that,
sketchily, in appendix A.

3.3. Symmetries

We have previously emphasized that the periodicity condition (2.49) usually involves “‘jumping over
a cut”; that is, it relates values of ” at points in two different strips of holomorphy. On the other hand,
combining (3.9) and (3.7) one arrives at

G%(t—-ip, A, B)=G*(-1,B, A). (3.12)

This equation relates boundary values of functions within the same strip; on the left side a limit as z
approaches the bottom boundary of the strip from above is understood, while on the right, z
approaches the top boundary from below. Of course, because of the interchange of A and B we are
dealing here with two different functions; also, a reflection in ¢ is involved. In some circumstances,
various symmetries will eliminate one or the other of these “twists”. These relationships are potentially
useful — and also a potential source of confusion. Therefore, we shall dwell upon them awhile.

We return to the two-point function of a charged scalar field with equation of motion (2.8), (2. 4)
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For simplicity we assume no boundary conditions are necessary. (Many of the conclusions will extend to
interacting scalar fields with the same symmetries.) A system of charged particles in an external
magnetostatic potential A; (but no electrostatic potential) ought to be invariant under CT, an operation
of simultaneous charge conjugation and time reversal. If the magnetostatic potential vanishes, the
system should also be invariant under C and T separately (even if the static gravitational potential, g, ,
and scalar (masslike) potential, V, are still present). In the field theory the C operator interchanges ¢
and ¢". Recall also that any symmetry which includes time reversal involves a complex conjugation of
matrix elements, as well as reflection of ¢.

An equilibrium state (with vanishing chemical potential) should exhibit the indicated symmetries, be
it at zero or finite temperature. We shall now show that the systems considered by us indeed do this.
The identity expressing CT invariance is

CT:  ($(t,%) $'(0, y)) = (&'(=1,x) &(0, y))*. (3.13a)

The right-hand side equals (¢ (0, y) #(—1, x)). So, using the definitions (2.19-20) and (2.39-40), we
rewrite (3.13a) as

CT: G.(t,x,y)=G (—t,x,y). (3.13b)

From the explicit expressions (2.19-20) and (2.43), one sees that (3.13b) is satisfied by the vacuum and
thermal two-point functions.
Charge-conjugation invariance by itself is

Ci {((1,2) $'(0, y)) = (1, x) $(0, y)) . (3.14a)

(For a neutral field this is a tautology.) Using time-translation invariance, we rewrite the right-hand side
as (¢'(0, x) #(—t, y)). It follows that in the G notation, the condition is

C: G.(t,x,y)=G_(—t, y,x). (3.14b)
Finally, for time reversal we have

T: {6(,x) ¢'(0, y)) = (d(=1,x) $'(0, y))*; (3.15a)
after manipulations similar to the foregoing it becomes

T: G.(t,x,y)=G,(t, y,x). (3.15b)

(The same is true of G_.) Now note that in the absence of the magnetic field, the complex conjugate of
any eigenfunction of K (2.4) is also an eigenfunction with the same eigenvalue. Thus {(//l.(x)}wj:w and

{([/j(x)*)w}_:w are equally valid orthonormal bases for the w-eigenspace, so the integral kernel of the
projection operator onto that subspace can be written in either of the alternative forms

2 4@ 60 = 2 h©*H). (3.16)



S.A. Fulling and S.N.M. Ruijsenaars, Temperature, periodicity and horizons 159
This allows (3.14b) and (3.15b) to be verified on the explicit expressions (2.19-20) and (2.43). (This
argument remains valid for continuous spectrum, mutatis mutandis.)

Remark: Were we not interested in covering the case with an external magnetic field, we would have
written the basic field expansion as

8,9 = 2 (20,)" 2[4, exp(-io, ) a, + 4, ()" explio, ) b (.17

instead of (2.15). (Of course, by so doing one changes the definition of b,.) That is the only sensible

formalism for treating the Hermitian field, where one wants to have b} = a’. In that formalism it is C,
rather than CT, invariance which is immediately manifest without appeal to (3.16).

Now consider the consequences of combining these symmetries with the KMS condition, (3.9). In
the present situation the latter becomes (on the boundary)

Gi(t—iB,x, y)=Go(1, %, y). (3.18)
[Use the definitions (3.8) with A = ¢(0, x), B=¢"(0, y).] If (3.13b), CT invariance holds, then

Gi(t—iB,x, ) =G?(~t,x, y). (3.19)
If C holds, then

GR(t-iB,x,y)=G"(-t,y,x). (3.20)
If T holds, then

GP(t—iB, x, y)=G%(t, y,x). (3.21)
We can define a two-point function for ¢ precisely analogous to G for ¢:

He(t,x, y)=Z " Tr[e " ¢'(t, x) ¢(0, )] = G (~t, y, x) (3.22)
(with a similar definition for B = ®). Then (3.18) can be rewritten

GP(t-iB,x, y)=H"(-t,y,%). (3.23)
Similarly, if T holds, we have

GP(t—iB, x,y)=HA(-t,x,y). (3.24)

The periodicity condition (2.49) equates the value of & at the point A in fig. 3 to the value at point B

(in the next strip). From one point of view, (3.18) is merely a restatement of that fact - since G? are
restrictions of ¢ to adjacent strips, as indicated in (2.46) —and (3.21) is a similar relation with an

exchange of x and y. On the other hand, (3.21) is rewritten in (3.24) as an equality between the value
of one two-point function at A and the value of a different one at C (in the same strip but with time
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reversed). If CT holds, we have a relation (3.19) between A and C for the same two-point function.
The relations (3.23) and (3.20) are like these but with the additional exchange of x and y.

In no case do we have an equation relating points A and D (same strip, same sign of t) — unless %
happens to be continuous across the axis there, so that its values at B and D are equal. Such is of course
the case when |f| <d(x, y); it can also happen when [¢|>d(x, y) if the field satisfies Hugyens’s
principle, so that the commutator vanishes at timelike separations as well as spacelike ones. Example:
the massless free scalar field in Minkowski space-time of even dimension greater than or equal to 4. See
also [39, pp. 221-227] and references therein. In curved spaces, polelike singularities may be
superimposed on the cut, because two points may be connected by both timelike and null geodesics [54,
esp. caption to fig. 4].

3.4. Ordering in imaginary time

One occasionally encounters the misconception that working with the time-ordered field product [see
(2.28) and (2.52)] instead of the ordinary product is responsible for eliminating the “twist” in the KMS
condition and converting it into a simple statement of periodicity. This is entirely false: As we have
seen, the time-ordered (Feynman) two-point function arises from the same analytic function, 4*, that
yields the ordinary (Wightman) two-point function upon choosing a different direction of approach to
the cuts. We have periodicity in moving from A to B (fig. 3) independently of any time ordering;
furthermore, for a fixed sign of ¢, G coincides with either G, or G_ and we do not have equality in
moving from A to D (except in very special cases, as mentioned at the end of section 3.3). (Much of the
confusion is due to lack of recognition of the existence of the cuts in the earliest papers on thermal
Green functions in connection with black holes.)

What is relevant to the KMS condition is ordering in imaginary time [61, chapter 1}. Let z = z, — z,,
s=1Im z, |s| < B. In the notation of section 3.1 define

G®(z,A,B) if s<0,

3.25
G*(z,A,B) if s>0. (3:25)

Gi(z, A, B)E{
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Then, formally,

Grlz, A, B)=(J4(A,B.))s » (3.26)

- {A22B21 if 5,<s,,

ToA.B)=1p, 4, ifs<s,. (3.27)
(Note: The smaller value of s appears on the left operator.) From (3.11) we see that

Ge(z, A, B)=9%(z, A,B)  for |s|<B (3.28)
—that is, throughout the two central strips in fig. 2. Thus

GE(z—iB, A, B)=G%(z, A, B) (3.29)

for 0<s< B (and also at the boundaries, if the limits are taken properly).

The definition (3.27) can be extended to points where Im z =0, Re z # 0 by putting the operator
with the larger value of Re z on the left. Thus one recovers the usual 7 product by approaching the real
axis from the directions indicated in fig. 1. This extension to equal imaginary times seems to us to be an
arbitrary convention which is not particularly important, at least in the relativistic context. See also
appendix A.

4. Horizons
4.1. Hyperbolic polar coordinates (the Kruskal-Rindler transformation)

A body at rest in the static gravitational field of a spherically symmetric mass must undergo a
constant acceleration to avoid being pulled into the center of attraction. A static gravitational field is
therefore a physical situation more closely analogous, in some ways, to flat space as experienced by a
uniformly accelerated observer than to flat space as experienced by an inertial observer. The path of a
uniformly accelerated observer through Minkowski space-time is a hyperbola. If this motion is
continued for all time, there is an associated null (lightlike) hypersurface, the future horizon, beyond
which lies a region of space-time from which signals can never reach the observer, and a past horizon
bounding a region to which the observer could never have sent signals (see fig. 4). Together these are
called simply “the horizon”. A black hole, almost by definition, is a gravitational field in which a pair of
null hypersurfaces exists which forms a horizon for every external static observer. (By “black hole” we
shall mean here the maximal analytic extension of the vacuum Schwarzschild solution (4.9), rather than
a nonstatic configuration containing a collapsing star.)

In the cases we shall discuss, the region R of space-time exterior to the horizon is static, hence has a
time-translation symmetry group. The crucial point is that in the vicinity of the horizon, these symmetries
have the geometrical character of boosts (homogeneous Lorentz transformations) rather than ordinary
time translations. Indeed, in the case of uniform acceleration in flat space, they are a one-parameter
group of boosts. A coordinate system manifesting the static nature of the region R must become
singular on the horizon. The association of the horizon with finite temperature in quantum field theory
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is closely connected with the mathematical nature of a transformation to a coordinate system which is
regular on the horizon [68, 76, 42].
Consider first Minkowski space-time, of arbitrary dimension n+1=2. Let x=x" be a Cartesian
coordinate in the direction of the acceleration, and define new coordinates (7, r) by
t=rsinhr, x=rcoshr. (4.1)
Then the flat metric transforms this way:

—ds’=—df? +dx’ +d0° = - dr + drt + dO (4.2)

where

dn’= Zl (dx’)? (4.3)
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is the Euclidean metric of the transverse dimensions (if any). With the range —0 <7 <o, 0<r <, the
coordinates cover the wedge-shaped region R (“Rindler space”) defined by |¢| < x"; the lines paramet-
rized by 7, with » and x, = (x', ..., x""") constant, are hyperbolic paths of constant acceleration (fig.

4).
The scalar field in R may be quantized directly by separation of variables in the coordinate system

(7,r,x,) [41, 12, 19, 15]. In the notation of section 2.1, we have here

M=[0,9)xR""", M=RxM=R. (4.4)
Since we wish to identify the field in R with the field in Minkowski space, it is convenient not to make
the conformal transformation (2.12). Therefore, we will be working with the operator K of (2.11),
which has the form

K= ~r*9? —rg, - r’V. + r’m’ (4.5)
(V2 =Laplacian with respect to the transverse dimensions, if any). Otherwise, section 2 applies

unchanged.
We shall now show that the Rindler two-point function

GG (o, x,),(r,,3.) ({=T+i0) (4.6)
is equal (after composition with the coordinate transformation) to the Minkowski two-point function
Gulz, x,y)  (z=t+is),
which was studied in section 2.2. There we saw that
Gulz, x, )= F(=2"+[x -y,

where F(w) is a function holomorphic except at w = 0. Restricting the space-time points to the Rindler
wedge and using (4.1) yields

Gru(t,—t,x, ) =Fr’ + ri —2r,r,cosh(r,— 7))+ |x, — y. . 4.7)
To see that (4.7) is the same as (4.6), note first of all that the right-hand side of (4.7) with 7, — 7,
replaced by ¢ has the correct analyticity and periodicity structure in {; cf. fig. 2. Therefore it suffices to
show that its restriction to { =i(a, — a;) (o; real) is the kernel of the operator

(-9*da” + I%)'1

on L}(S'xM; r~' do drdf2), where S' is a circle of circumference 2. But this restriction is just
Gy (s, — s, x, y) written in terms of polar coordinates defined by

s§=rsinog, XxX=rcosc. (4.8)

Thus, the desired equation (2.26), which reads here
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- .
[— F + K(x)] Gfl (‘72 YT (rx’ x¢)? (ry’ yi)) = 6(02 o Ul) S(rx o ry) B(xL _yl) ry s
2
is simply a transcription to polar coordinates on the (s, x) plane of the equation

3° -
[‘ 5 ~Viyt mz} G (s, =5, x,9)=8(s, —5,) 6(x —y)
2

and the conclusion follows.

As a result, the Minkowski vacuum state may be viewed, on restriction to R, as the Rindler thermal
state with 8 =2#. When one takes the normalization of the Rindler time coordinate into account, one
sees that the effective Rindler temperature at a point (7, r,, x,) in R is proportional to the acceleration
corresponding to the hyperbola (7, r,, x,) through that point—i.e., to r,'. For further discussion of
physical implications see Sciama et al. [78] and Bell and Leinaas [4].

For comparison with the Schwarzschild case later, it is useful to look at the foregoing development
from this angle: The vacuum two-point function, G (¢, x, y), of a free scalar field in Minkowski space
has an analytic continuation, 47(z, x, y), to complex values of z = + is, which is holomorphic along
the whole s axis if x # y. Such a holomorphic function is necessarily a 2#-periodic (and holomorphic)
function of o when polar coordinates are introduced by (4.4). (It is also possible to interpolate between
real { and imaginary ¢, at the cost of allowing the Minkowski spatial coordinate, x” — y”, to become
complex. One can check that, for fixed positive r, such points remain inside the tube where the vacuum
two-point function is analytic [cf. 85, esp. theorems 2.8 and 3.5].)

Historical remarks: The first inkling that acceleration is associated with temperature in quantum field
theory was obtained by Davies [25], who applied Hawking’s derivation of black-hole radiance [55] to a
reflecting barrier in flat space. The landmark paper on the subject, by Unruh [88], uses the methods
which are the subject of our section 4.2. The approach through the KMS condition on the two-point
function, which we have described here, was developed by many authors, including Dowker [33, 34],
Christensen and Duff [23], and DeWitt [28], in response to analogous developments in the theory of
black holes - to which we turn next. Meanwhile, Bisognano and Wichmann [8, 9] proved a related
theorem in axiomatic field theory, whose relevance to the horizon problem has been stressed by Sewell
[80, 82] and Kay [64, 65].

Now consider the (4-dimensional) Schwarzschild metric, which describes a nonrotating, uncharged
black hole of mass M:

—ds* = —(1-2M/r)de** + (1 -2MIr) " dr’ + * dQ, (4.9)
where now
dN’=de* +sin’0 de?, (4.10)

the usual angular element in spherical coordinates. The horizon is at r = 2M, and the range of relevance
of (4.9), analogous to R, is 2M <r <o, —oo < t* <o, If

r*=r+2MIn(r/2M - 1) (4.11)

(the Regge—Wheeler, or tortoise, coordinate), so that
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—o<r*<w, dr*/dr=(1-2M/n"", (4.12)
then
—ds® = (1 -2M/r)(=dr** + dr**) + r* dQ* . (4.13)
If we introduce coordinates (¢, x) by (4.1) with
r=t*/4M (4.14a)

and r in (4.1) replaced by

r'=2Me’=2Me""*M=[2M(r - 2M)]'* "™, (4.14b)
then we get
_ds*= % e M(_df + dx) + P d0?, (4.15)

where r is defined implicitly by (4.11). The original exterior Schwarzschild region corresponds to x > |¢],
but the metric (4.15) extends analytically to a much larger region of the (¢, x) plane. Figure 4 applies
without change, except that the reglons F and P now terminate (at a true singularity of the geometry) at
hyperbolic boundaries, £ — x* = 4M* (corresponding to r = 0 in the conventional continuation of (4.9
across the horizon). This is the famous Kruskal extension [68].

Since the Kruskal metric (4.15) is not static (» depends on ¢ as well as x), a quantum field propagating
in this background does not have a vacuum state in the usual sense. So the previous discussion of the
vacuum in Minkowski space cannot be carried over intact to the present situation. Nevertheless, like
Minkowski space, Kruskal space does have an analytic extension to a complex manifold, the
imaginary-time section of which is a real manifold of positive definite metric where the hyperbolic time
coordinate is transmuted into an angular coordinate. The metric of this space is

-1
g e7M(ds® + dx?) + rPd0R’ = <1 - @) ds*? (1 - %) dr’ +r*d0?, (4.16)
where, in analogy to t* and z,
s*=4Mo , {=7+i0; (4.17)

and another way of stating the point is that, having arrived at the right-hand side of (4.16) by formal
analytic continuation of (4.9), ene finds that the only assignment of a period, B, to s* which eliminates
the singularity on the axis (r=2M) is B =87 M [48, 50, 56].

It is then natural to consider a state whose two-point function (or Feynman propagator) analytically
continues to this imaginary-time manifold; Hartle and Hawking [54] gave an argument for assuming this
to be the case, based on path integrals for relativistic particles. Such a state will satisfy the KMS
condition on the original Schwarzschild space-time, with temperature T, =(87M)™' —the same
temperature associated by Hawking [55] with a star collapsing to form a black hole of mass M. Gibbons
and Perry [49, 50] continued this analysis and identified the Hartle-Hawking propagator with that
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appropriate to a black hole in equilibrium with a gas (of field quanta) of temperature T, at infinity (cf.
section 4.2). Gibbons and Perry (see also [56]) gave a qualitative, perturbative argument that any
interacting field must also have a natural equilibrium state with the black hole at this temperature;
Sewell [80, 82] made a rigorous, axiomatic study of this question, starting from technical assumptions
whose validity will merit future investigation.

Similar observations have been made about de Sitter space (a space-time of constant, nonzero
curvature) by Figari, Hoegh-Krohn and Nappi [36], Gibbons and Hawking [47], Dowker [34], and
others. In this case the temperature turns out to be proportional to the curvature, and the time variable
involved in the KMS condition is the “‘private” proper time of any inertial observer, extended to a
Fermi normal coordinate system — which necessarily terminates in a horizon.

We should also mention a similar construction by analytic continuation in cosmological — nonstatic —
contexts [20-22]. In this case the time continues to the radial, rather than the angular, coordinate.

4.2. The doubling of Fock space

Simultaneously with the work of Hartle, Hawking, Gibbons and Perry (section 4.1), the connection
between horizons and temperature was being worked out by an alternative method [88, 60, 42] (see also
[63-65, 30]). Although it also involves analytic continuation, this approach concentrates attention more
on the physical (real) space-time. We summarize it here briefly.

In either Minkowski or Schwarzschild space-time (or any static model with a horizon), the scalar field
can be quantized in the region R in the standard way [41, 10, 12]. The field expansion has the form
(2.15) (or rather its continuum analogue) for certain eigenfunctions ¢,, whose explicit form will not
concern us till section 4.3. There is an identical construction for the region L, symmetrical to R on the
other side of the horizon (see fig. 4), with basis functions ¢, , say.

A particular vacuum state and associated Fock space are implied by writing down (2.15). What is
important here is the splitting of the field into a positive-frequency, or annihilation, part and a
negative-frequency, or creation, part, not the particular basis {¢,} employed. Unruh enquired how the
positive-frequency normal modes in R and L are related to the positive-frequency modes in the
standard quantization of the free field in Minkowski space. The latter are plane waves; Unruh noted
that they can be characterized by their property of holomorphy in the lower half-planes of the complex
variables

V=t+x, U=t—-x. (4.18)

It turns out (see the cited references for details) that this property is shared by uniquely determined (up
to phase) linear combinations of pairs of modes, one from R and one from L:

#,(1, x)=[2sinh(7w,)] """ exp(~iw, ) [exp(7w,/2) 4,(r) + exp(— 7w,/ 2)#5(r)]
=exp(—iw, 1) (cosh 8, ¢, +sinh 6, 1/7“:) , (4.19)

where

cosh 8, = (1 — exp(—27w,))”""?,
4.20
sinh 6, = exp(— 7w, ) cosh 8, . (4.20)

(We have written the coefficients in two different but equivalent forms to make contact with the
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notations of several references at once.) The basis change (4.19) induces a redefinition (Bogolubov
transformation) of the annihilation and creation operators:

A =coshf, a, — sinh#, I;Z . (4.21)

The A, are, by the analyticity argument, (continuum) linear combinations of the annihilation operators
of the standard quantization.

From (4.21) it follows that the vacuum of the standard quantization is full of particles from the point
of view of the original quantization in R. From the explicit form (4.20) of the coefficients, it follows that
these particles form precisely a thermal gas with inverse temperature 8 =2#. So the conclusion of
section 4.1 is reproduced.

On the Schwarzschild-Kruskal manifold there is no ““standard” quantization a priori. However, the
geometry of the horizon (more precisely, of its projection into the (¢, x) plane — the remaining
coordinates playing no essential role) is the same as in Minkowski space. It therefore seems likely that
the physically most natural quantization is defined by normal modes with the same analytic property as
the flat-space plane waves. One therefore repeats the construction (4.19-21) in the black-hole context,
and obtains a state which, relative to the original quantization in the static exterior Schwarzschild metric
(4.9), is characterized by inverse temperature 8 =8aM. (The extra factor 4M arises from a difference
in conventional normalization of coordinates-cf. (4.17).) This state is, of course, the Hartle-
Hawking—Gibbons-Perry equilibrium state previously discussed. (Unruh actually applied this construc-
tion to only half the modes to obtain a state in which the black hole is radiating into empty space.)

The analytic continuation assumed in this approach is more conservative than that in the other
approach, because it is required only on the horizon, not in the whole space R. On the other hand, the
statement that the constructed state comprises a thermal gas of quanta, although formally unimpeach-
able [88, 60, 78, 86, 63 (appendix 1)], glosses over the technicalities related to the continuous spectrum,
which prevents the Hamiltonian of the system from being a trace-class operator (see remarks in sections
2.3 and 2.4, see also [89]). Perhaps the most efficient way to travel around this problem is to pass a
posteriori to the imaginary-time manifold, verify the KMS condition for expectation values, and appeal
to the GNS construction. (See also [30].)

Israel [60] noted that the construction (4.20-21) already existed in the literature of general quantum
statistical mechanics. It appears in the work of Araki and Woods [1, section 4 and appendix 1] and was
rediscovered by Takahashi and Umezawa [86], who called it “thermo field dynamics” and developed it
as a computational tool. (See also [3, 71, 87 (esp. chapter 4), 73, 74, 63, 64, 72].) In this work the
degrees of freedom associated with operators a,, b, are a fictitious mathematical device, not associated
with a second physical region L.

There is a relationship between this Araki-Woods construction and the KMS condition via what is
now called the Tomita-Takesaki modular theory (for which see [59, sections 5-7]). This connection
[which is summarized in Ojima’s papers] plays an important role in the original paper of Haag,
Hugenholtz and Winnink [52] on the KMS condition. The work of Bisognano and Wichman [8, 9] has a
bearing on a geometrical realization of the modular structure in the case of (interacting) fields in (flat)
Rindler space. (The modular conjugation becomes a reflection of R onto L.) The work of Sewell {82]
and Kay [63, 64] is partly concerned with extending this analysis to the Schwarzschild horizon.

4.3. Infrared questions

The operator K (4.5) of Rindler space has a spectrum which extends all the way down to w” =0,
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even if the mass of the field is positive. The same is true of the analogous operator for Schwarzschild
space. Therefore, it cannot be taken for granted that the various two-point functions actually exist in
these important contexts. Kay [65, esp. theorem 4.5] has studied some essentially equivalent issues by
operator-theoretic methods. In this section we investigate the existence of thermal states via eigenfunc-
tion expansions. For Rindler space our results are complete, including cases which Kay left open. For
Schwarzschild space, we are unable yet to give a conclusive answer by our methods; since Kay handles
this case without difficulty, we keep our remarks on it very brief.
As discussed in sections 2.2 and 2.4, what is needed is to show convergence of

> j o '|flo;@)*de  for the vacuum (4.22a)
“ 0

and of
> J' ® 2 |flo; @)?dw  for thermal states, (4.22b)
* 0

for arbitrary C; functions f with eigenfunction transform

s @)= [ 0, ()" F0) 90 . (4.23)

Here w’ is the variable ranging over the spectrum of K, « is a schematic “auxiliary quantum number”,
and the eigenfunctions of K are normalized through

[ e 000907 @5 = (0 - ) 8~ ). (424)

We also recall that convergence of (4.22a) or (4.22b) is equivalent to
CyCdomK™'*, CycdomK '?, (4.25)

respectively.

The physical interest of this issue is heightened by its close relationship to the phenomenon of
Bose-Einstein condensation. Throughout this paper we have assumed that the chemical potential
vanishes. In physical terms this amounts to assuming that the “particles” involved behave like photons
or phonons. However, if they behave like, say, ‘He atoms, one should allow p #0, and then the
convergence or divergence of the integrals (4.22a,b) amounts to the occurrence or absence of
Bose—Einstein condensation; see, e.g., [13, chapter 5].

In the Rindler case it is expedient to trade the variable r for a variable

p=lnr (-o<p<x®), (4.26)

so that K assumes the Schrodinger form
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K=-d%ap* e
=~9%dp* + (-4, + m’)e (4.27)

and acts on the Hilbert space L*(M, dp d02), where M is now simply R”. In particular, when n =1 and
m =0 one has K = —3%dp> so that (4.23) amounts to Fourier transformation. Thus, both (4.22a) and
(4.22b) diverge whenever IR f(p)dp #0.

On the other hand, in the cases m >0, n=1 and m =0, n>1 the eigenfunctions are [42, 78]

¥,.(p, x,) = c(wsinh m0)""* K, (k, €”) exp(ik-x,) (4.28)
where
= (k2 + m2)1/2 . (4.29)

From the integral representation
K, (x)= f e eoswtdt  (x>0) (4.30)

it is obvious that
|K,,(x)| < Ky(x) for x>0. (4.31)

Thus if we insert (4.28) into (4.23) and do the x integral we infer that

If(w; k)| = co f K,(k, €")dp, (4.32)

supp f

where ¢ depends only on f. From this it easily follows that both integrals (4.22) converge. (To see this
when m =0 and n > 1, recall that K (x) ~In(1/x) as x—0.)

We conclude that in the Rindler case the two-point functions exist for m >0, and also for m =0
provided that at least one “infinite” transverse dimension, ensuring a continuous k spectrum, is present.
In particular, G5, exists for every 8 < in three-dimensional Rindler space-time, unlike the three-
dimensional massless Minkowski case, where G2, does not exist for 8 <. For 8 =2 this result could
have been predicted: G2, is a restriction of G}, , which has no infrared pathology in three dimensions
(cf. sections 4.1 and 2.2).

In the Schwarzschild case, it is well known (see, e.g., [27, section 5.1] for m = 0 and [37] for m > 0)
that the analogues of the Bessel functions in (4.2c) are eigenfunctions of operators

K, = —d*dr** + V(r*) (4.33)

where the potentials

V()= (1 - 2-?)(%—4 pGa m2> (4.34)

r



170 S.A. Fulling and S.N.M. Ruijsenaars, Temperature, periodicity and horizons

V

r*

Fig. 5.

have the schematic behavior graphed in fig. 5. The question whether (4.23) holds is equivalent to the
question whether Cj(R) belongs to the domain of each K}, a=—j or —3. Unfortunately, the
Schrodinger equation for K, cannot be solved in terms of standard special functions as in the Rindler
case. One would expect, nevertheless, to find the answer to our question by inspecting the extensive
lore on one-dimensional Schrodinger operators and their eigenfunctions; surprisingly, this appears not

to be the case. It would suffice to prove a bound of the form
sup [, (r9) = Cy 0%, (4.35)

w—0, a >}, for arbitrary bounded subsets B CR, where ¢, are the eigenfunctions of K, with the
standard normalization at infinity (guaranteeing (4.24)). Of course, it is physically obvious that ¢,(r*)
with r* fixed vanishes when w — 0: As the energy goes to zero, the turning point for a classical particle
hitting the potential hill moves off to —o, and even a quantum particle will not penetrate far beyond the
turning point. However, just how fast the wave function vanishes cannot be established by heuristics
alone. One might hope that a rigorous asymptotic analysis of these eigenfunctions, guided by the
analogy between the Schwarzschild and Rindler potentials near the horizon (r* — —), would establish
the desired behavior; but such a study is beyond the scope of the present paper.

4.4. Concluding remarks

The discovery in the mid-1970s of an unexpected relationship between geometrical horizons and
thermal effects stimulated much speculation that a profound unification of gravitation, quantum theory,
and thermodynamics was at hand. Further investigation clarified this mysterious relationship by fitting it
into the respective frameworks of two characterizations of finite-temperature equilibrium states which
were already part of ordinary (nongravitational) quantum statistical mechanics: the Araki-Woods
construction of a double Fock space, and the Kubo-Martin-Schwinger condition of periodicity in
imaginary time. The periodicity emerges automatically in the context of a horizon, because the natural
static coordinate system for the problem is a hyperbolic polar coordinate system associated to the
horizon. Likewise, the doubling of the Fock space is the unsurprising consequence of the division of
physical space into two noncommunicating parts by the horizon [cf. 64].
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On the other hand, within quantum statistical mechanics itself both the KMS condition and the
Araki-Woods construction are simply mathematical facts, for which clear and direct physical motiva-
tions are hard to find. This problem is acknowledged in the literature of the subject:

The mathematical structure of the representation, as we have constructed it, is rather suggestive.
[The field] can be interpreted as the sum of an annihilation operator on the first space (or first kind of
particle) and a creation operator on the second space (or second kind of particle). This immediately
brings to mind the particle-antiparticle description in elementary particle physics. . . . However we
do not understand the significance of these remarks.  [1]

Starting from the Gibbs ensemble it is evident that [the KMS] condition is satisfied but it is
completely unclear that this condition alone should characterize equilibrium. Nevertheless, this is the
case for a large class of [systems]. This rather surprising result is both of practical and conceptual
utility. . . . [TJhe KMS condition has a variety of characterizations which emphasize different physical
features such as stability under perturbations and ergodicity in the form of asymptotic Abelianness.
This clarifies to a large extent the nature of the equilibrium states even if it does not provide any
profound explanation for their definition.  [13]

So, although the gravitational or geometrical half of the connection is now manifest, at least for the
“free” fields considered in this paper, a completely satisfying, intuitive understanding of the thermal
nature of horizons remains elusive, even for this simple case.
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Appendix A. Nonrelativistic ‘“free’’ fields and parabolic Green functions

We outline the analogue of the developments in section 2 for a nonrelativistic system of noninteract-
ing bosons. We shall again consider a manifold M and an operator K given by (2.4). However, in the
nonrelativistic context K represents the one-particle energy, and V(x) an electrostatic potential. We
shall again assume (2.5)—(2.7), with the additional restriction that the spectrum of K has a positive
lower bound. For notational convenience we shall also assume that K has no continuous spectrum.

With these assumptions, our system can be described by a quantum field (¢, x), satisfying

iowlat= Ky (A1)
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and canonical commutation relations. Specifically, we may take

00 = 2 b, exp(iolna, 42)

which is the analogue of (2.15). We mention in passing that what follows has an obvious translation to
the fermion case: One needs only to replace the boson annihilators in (A2) by fermion ones. (In
contrast, for the Klein—Gordon field (2.15) this replacement does not lead to canonical anti-commuta-
tion relations. To describe noninteracting fermions relativistically one needs a different field, such as

the Dirac field.)
In analogy with (2.19) and (2.20), one has vacuum two-point functions

G (t, x, y) = {0|¢(t,, x) ¢'(t,, )|0)

= gl o,(x) b, (y)* exp(=iwyt) (=1, 1) (A3)
and

G™(t, x, y)= <0|¢’T(t1’ y) (e, x)l0> =0. (A4)

By repeating the ab initio calculation of the Gibbs two-point functions in sections 2.3 and 2.4 one finds
the finite-temperature two-point functions

GE(t, x, )= (Wt x) ¥7(11, )4
= 30 0,00)" (1- exp(-Bo?) " exp(-iw’). (As9)
G2 (1, x, ) = (e, ¥) 9 00D,
= 3 009 ()" (1~ expl-Bo) ' expl—Bod) expl-ia). (ASH)
which clearly satisfy

GA(t,x, y)— G2(t, x, y) = [¥(t, x), ¥ (0, y)] = G7(t, x, y) . (A6)

These equations are to be compared with (2.43) and (2.44).
Setting z =t +is, we now write

Gi(z, X, y)= v§=:1 g, (x) ¢, (y)*(1- exp(—Bwi))_l qi(z) (A7)
with
g% (2) =exp(-iw’z), B=w

0, B=w
¢°(2)= {eXp(—Bwi) exp(—iwlz), B<w. (A8)
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In analogy with the discussion beginning with (2.45), we see that G is holomorphic in the region s <0,
and G _ in the region s < 8. These functions are not two pieces of one holomorphic function, since the
commutator (A6) does not vanish on an open interval of the ¢ axis in the nonrelativistic case. Of course,
the KMS condition (3.9) holds true again: G_ in the strip 0<s=p is a copy of G, in the strip
—B <s5=0. If we identify (say) t—iB/2 with t +iB/2, we obtain a cylindrical complex manifold on
which is defined a function 9?(z, x, y) which is holomorphic everywhere except on the ¢ axis, where it
has two different boundary values. Similarly, for 8 = we put G, at s <0 together with G” at s >0
(namely, zero!) to get a ¢~ holomorphic except on s =0.
As in section 2, let

G%(s, x, y)= 9°(is, x, y) . (A9)

(It is not hard to see that GP*, viewed as a distribution in (s, x, y), does not depend on which boundary
value of 4” at s =0 is taken. Thus we need not and shall not commit ourselves to a choice.) Let us first
consider the case B =«. Then it is clear that G*(s, — s, x, y) solves

[a1ds,+ Koyl G = 8(s, = 5,) 8(x = ) ¥(3) . (A10)

In fact, G is just the usual Green function for the (time-reversed) heat equation associated with K, ,.
We may also write

6650 = 0 S [ dky 0, (0) explikisy) ()" expl-ikis) (-iky + 02)

s=s5,—5#0. _ (Al1)
Thus, G” can also be regarded as the kernel of the inverse to

—d/9s + K, (A12)

viewed as an operator on the Hilbert space L*(R X M; y'/* ds d"x). This parallels the situation in the
relativistic case; cf. section 2.2, esp. (2.25), (2.26).

We shall now show that, with our definition of G*, the state of affairs for finite temperature is the
same as in the relativistic case, too. Specifically, one has

2min 2]‘1
B tw, ,
(A13)

G, x,y) =B~ 2 2 u,(x) exp(2mins,/B) ,(y)" exp(~2mins, B)| -

which is an immediate consequence of the readily verified equality

© . -1
;_ [— 27;;" + wz] exp(27rins/B) = B(1 — exp(— Bw?)) ' exp(—Bw’) exp(w’s), 0<s<B.

(A14)
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Thus, G* solves (A10), viewed as an equation on S' X M (where S' has circumference 8), since it
equals the kernel of the inverse of (A12), regarded as operating on functions in L*(S'x
M; y'/? ds d"x). This is the analogue of the situation described in section 2.3 [see the paragraph

containing (2.50b)].
If we take boundary values of ¥” on the real z axis in the same way as described below (2.52), then
we obtain the usually considered time-ordered Green function

GE(t,x, 1) =(T[9(t, x) $1(0, Y)]) g = G2 (. x, )+ 6() [(e, %), w7(0, y)]. (A15)
It satisfies the inhomogeneous Schrodinger equation
(i0/dt — K ,))G =i8(1) 8(x ~ y) y(y) . (A16)

These equations are the nonrelativistic counterparts to (2.53) and (2.54). Also, G¥ again connects the
boundary values of 4” from adjacent holomorphy strips. We repeat, however, that in the nonrelativistic
case these boundary values are everywhere different, in sharp contrast to the relativistic case.

Finally, we note that the finite-temperature functions may again be written as image sums of the
T =0 functions, as in (2.58) and (2.59). This follows from the same arguments as those presented in
section 2.5.
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