
Physics 530
Tensors

Metric and variations. One of the techniques that had grown duing
the 19th century was that of the calculus of variations. The idea was that
one could write down an action for the system, a n integral over a function
(like a Lagangian or a Hamiltonian action— differeing in that the second
was a Lagrangian in which the action was linear in first derivatives with
respect to time of the dynamic variables of the theory.) The idea was that
the equations of motion were those functions of time and of space which
extremised the action. Ie, if we designate the variables with ψ(t, x) where x
could be coordinates in a D dimensional space, or could be indices which were
summed over. The consider a solution of the equations of motion, ψ0(t, x)
which is an extremum of the action. Ie, consider a set of funtions ψǫ(t, x)
with ψǫ(t, x) such that

I(ǫ) =
∫

S(ψǫ(t, x))dtd
3x (1)

then we want that dI
dǫ
|ǫ=0 = 0for all function of ψǫ. One may want to restict

the functions of ǫ according to their values on the boundaries of the spacetime,
so that they integral does not depend on those boundry values.

In GR, one wants that the integral be independent of the coordinates
that one chooses to express that integral. We therefor need that the integral
be independent of the coordinate choice. The first thing is to require that
dtdxgive an integral over physical, not coordinate volumes.

Consider, in flat space, one has a set of vectors li0, l
i
1, l

i
2, l

i
3 which are lin-

eary indendent (Ie there are no numbers αj such that
∑

j αjl
i
j = 0.Then the

question is, what is the volume of the paralleapiped made up of the four
vectors lij? Length times width time height times duration, but this is not
simply the product of the leghts of these vectors, but each of length, width,
height and duration must be perpendicular to the all the others as well. Let
us also assume that they are all unit vectors. Define

l̃i0 = li0 (2)

l̃i1 = li1 −
lm1 gmnl̃

n
0 l̃

i
0

l̃k0gkl l̃
l
0

(3)
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l̃i2 = li2 −
l̃m0 gmnl

n
2 l̃

i
0

l̃k0gkl l̃
l
0

− l̃m1 gmnl
n
1 l̃

i
0

l̃k1gkl l̃
l
1

(4)

... (5)

In each case the next˜is made by subtracting the inner product between each
of the previous unit tilde vectors and the current vector times the previous
tilde vector. Each of the ˜ vectors are then orthogoanl to each of the the
other tilde vectors. The lengths then of these mutually orthogonal vectors
will be Length2j = l̃ikgijl

j
k. and the volume squared of the parallelapipe will

be Length20Length
2
1Length

2
2Length

2
3, Now, take l

i
j to be the vector parallel to

the jth coordinate axis, and with parameter along the curve to be xj and take
the vector to be dxj. Then the volume will be proportional to dx0dx1dx2dx3

with the proportionalty being some product of the metric components. The
value will be a product of components of the metric. This turns out to be the
determinant of the metric in the volume squared, or the square root of the

determinant in the volume. Thus, the physical (metric) volume is
√

det(gij.
This expression is linear in one set of terms and does not appear at all in
any of the other terms. The some of those other terms is called the minor of
the term. Ie, if we look for say g23, then it will be multipie with a term M23.
M23 will not contain g23, nor will any of the remaining terms.The minor will
not contain any the elements in either the row or column of the factor g23.
in question. The determinat will equal

g = g20M
20 + g21M

21 + g22M
22 + g23M

23+

Since any matrix with duplicated rows or columns has a zero determinant,
and since

∑

k gikM
jk is the determinant in which the ith row is the same as

the jth row, this sum is zero unless i=j. And if i=j, this gives the determinant.
Thus we have

∑

k

gikM
jk = det(g)δji (6)

which means that M jk = det(g)gjk Also det(gjk)det(gik) = 1 since the deter-
minant of a product of two matricies is the product of the determinats, so
gij/detg is the minor of gij in the determinant of gij.

If one makes gij be a function of ǫ then we can write

ddet(g)

dǫ
|ǫ=0 = det(g)gij

dgij
dǫ
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or as usually written
δdetg = det(g)gijδgij

Also since gikgjk = δik we also get

gikδgjk + δgikgjk = 0 (7)

or
δgik = −gikδglkgil

or
δdet(g) = −det(g)gijδgij

.

0.1 Electromagnetism

Define the tensor

Fij = ∂iAj − ∂jAi (8)

where A0 = φ the electromagnetic potential, and Aa are the components of
the vector potential ~A. (indices a, b, c, d, e, f go from 1 t0 3) Then, assuming

Minkowski coordinates, F0a are the components of the Electric field, ~E and
Fab = ∂aAb − ∂bAa = Bc where a, b, c are an even permutation of 1, 2, 3.
source free Maxwell’s equations then are

∂nuFmu
ν = 0 (9)

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 (10)

These equations can be derived from the action

I = −1

4

∫

√

(g)gµρgνσFµνFρσd
4x (11)

where Fµν here is used as shorthand for ∂µAν−∂νAµ. For a Minkowski metric,
the variation of this with respect to the δAµ gives the Maxwell equations.

Note that

F µνFµν = F 0aF0a + F a0Fa0 + FabF
ab = −2 ~E · ~E + 2 ~B · ~B (12)
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so, the action is

I =
1

2

∫

( ~E · ~E − ~B · ~B)d4x (13)

In a guage where φ = 0 = A0, the first term is the Kinetic term (∂t ~A · ∂t ~A)
while the second is like a potential term.

Let us now vary this with respect to δgmunu. This gives

δgκλI = −1

4

∫

(
√
g
(

−1

2
gκλδg

κλ (14)

+F µνFµν + (Fκνg
νσFλσ + Fµκg

µρFρλ)δg
κλ

)

d4x (15)

The ”kinetic energy” (time derivative of the fundamental fields, in this case
∂tAa should have the form 1

2

∑

a(∂tAa)
2) = 1

2
E · E, which suggests that

√

|g|Tµν = 2 δI
δgµν

. From the antisymmetry of F the last two terms are the

same (changing the names of the dummy variables ν, σ to µ, ρ). This gives
the energy Momentum tensor in flat spacetime

Tκλ = (F
κνFλ

ν − 1

2
FµνF

µνgκλ) (16)

(note that the Trace of this is 0 gκλTκλ = 0).The T00 term is given by

T00 = ~E · ~E − 1

4
(2( ~E · ~E − ~B ~B)) (17)

=
1

2
( ~E · ~E + ~B ~B) (18)

which is the usual expression for the energy of the electromagnetic field. The
term

Toa = −1

2
F0bg

bdFad =
1

2
EbFab =

1

2
~E × ~B (19)

is just the Poynting vector.

0.2 Massive scalar field

One can carry out the same kind of discussion with a scalar field

I =
1

2

∫

√

(g)(∂µφ∂νφg
µν −m2φ2)d4x (20)
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Again, varying twice this with respect to gκλ we get

δI =
∫ √

g
(

−1

2
∂µφ∂νφg

µν −m2φ2)gκλδg
κλ (21)

+∂κφ∂λφδg
κλ

)

d4x (22)

=
∫

√

|g|(∂µφ∂νφ− 1

2
(gρσ∂ρφ∂σφ−m2φ2)gµν)δg

µνd4x) (23)

0.3 Isentropic, Barytropic, irrotational per-

fect fluid

In this section I follow : S. Matarrese ”On the Classical and Quantum Irrota-
tional Motions of a Relativistic Perfect Fluid. I. Classical Theory” Proc Roy
Soc A401, 53-66 (1985). Although he goes in the opposite direction, starting
with the energy-momentum tensor, and deriving the necessary action. Note
also that the assumptions are needed in order to ensure that the fluid is
self contained and thermodynamically reversible. This ensures that energy
and momentum are conserved and are not dissipated either by interactions
with a heat bath or internally between various parts of the fluid (eg, internal
friction).

Another possibility is the energy momentum tensor of an irrotational
fluid, isentropic, barytropic perfect fluid. (barytropic means that the pressure
is a function of the energy density ρ, isentropic means that the entropy per
particle is constant). Define n as the particle number density, w as the
enthalpy per particle, ρ+p

n
, of the fluid, where n is the particle density.

Using the thermodynic relation for and an-isentropic (no heat flow be-
tween values) fluid pdv = −dǫ where v is the volume per particle( 1

n
), and ǫ

the energy per particle. We have

pd
1

n
= −dρ

n
(24)

which means that dw = dp
n

or n = dp
dw

We define the fluid as irrotational if ∂µ(wuν) − (∂νuµ) = 0, where uµ is
the proper velocity of the fluid ( gµνuµuν = 1). This means that the we can
define wuµ = ∂µψ and w2 = ∂µψ∂νψg

µν
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Since, by definition, w = p+ρ
n

=
√

∂µψ∂νψgµν and since ρ is a function of
p, we find that p is a function of derivatives of the scalar field, and the upper
metric, i.e.,

w2 = ∂µψ∂νψg
µν (25)

.
The action is

I =
1

2

∫

√

|g|p(w =
√

∂µψ∂νψgµν)d
4x (26)

which is a function only of gµν and of the derivatives of φ. The equation of
motion of the fluid is then the variation of the above by φ, which would be

δI =
∫

√

|g|n
w
gµν∂νψ∂νδψd

4x (27)

=
∫

√

|g|( 1
√

|g|
∂ν
√
gp′gµν∂µψ))δψd

4x (28)

where p′ is the derivative of p with respect to its argument. Thus we have

(
1

√

|g|
∂ν
√
gp′gµν∂µψ)) = 0 (29)

a highly non-linear differential equation for ψ since p is a highly non-linear
founction of its argument.

The energy momentum tensor is then give by twice the variation of the

action with respect to gµν divided by
√

|g|. This is

Tµν = (ρ+ p)uµuν − pgµν (30)

which the equations of motion of the fluid ensure that it is conserved. Note
that if the fluid is at rest (ua = 0) then T tt = ρ the energy density of the
fluid. The trace of the fluid gµνTµν is then equal to ρ + 3p. For a fluid of
relativistic particles (eg photons) the trace is equal to zero, and p = 1

3
ρ,

which is not surprizing for photons, which are electromagnetic fields whose
energy-momentum trace is equal to 0.
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