Physics 530-11
Penrose diagram of collapse
The Vaiyda metric

$$
\begin{equation*}
d s^{2}=\left(1-\frac{2 M(v)}{r}\right) d v^{2}-2 d v d r-r^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right) \tag{1}
\end{equation*}
$$

is the solution to Einstein's equations of a collapsing null dust (ie matter whose stress energy tensor is of the pressureless form

$$
\begin{equation*}
T^{\mu \nu}=\rho u^{\mu} u^{\nu} \tag{2}
\end{equation*}
$$

where in this case the velocity u^{μ} is a null vector, rather than a timelike velocity. In our case, we can take u^{μ} to be the r coordinate axis, and ρ in that case is proportional to $\partial_{v} M(v) / r^{2}$.

If we choose $M(v)$ to be a step function $M(v)=0 \quad v<0$ and $M(v)=$ $M_{0}>0 \quad v>0$ then the infalling null matter is a shell like (delta function) sphere of matter. Thus we have

$$
\begin{array}{rr}
d s^{2}=d v^{2}-2 d v d r-r^{2} d \Omega^{2} & v<0 \\
d s^{2}=\left(1-\frac{2 M_{0}}{r}\right) d v^{2}-2 d v d r+r^{2} d \Omega^{2} & v>0 \tag{4}
\end{array}
$$

where $d \Omega^{2}=d \theta^{2}+\sin (\theta)^{2} d \phi^{2}$. Going to null coordinates, we can define the coordinate u to be $v-2 r$ for $\mathrm{r}_{j} 0$. This gives the metric

$$
\begin{equation*}
d s^{2}=d v d u-\left(\frac{v-u}{2}\right)^{2} d \Omega^{2} \tag{5}
\end{equation*}
$$

For $v>0$ we want the coordinate u to be continuous (which implies that $r(v, u)$ must be continuous as a function of v) This can be done by defining

$$
\begin{equation*}
f(u)=\left(v-2\left(r+2 M_{0} \ln \left(\frac{r}{2 M_{0}}-1\right)\right)\right. \tag{6}
\end{equation*}
$$

for some function f. Thus, we must have that

$$
\begin{equation*}
\left(-2\left(r+2 M_{0} \ln \left(\frac{r}{2 M_{0}}-1\right)\right)=f(-2 r)\right. \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
f(u)=u-4 M_{0} \ln \left(\frac{-u}{4 M}-1\right) \tag{8}
\end{equation*}
$$

Note that this works only for $u<-4 M$. We then have for $v>0$

$$
\begin{equation*}
d s^{2}=\frac{2 M_{0}}{r}\left(\frac{r}{2 M_{0}}-1\right) f^{\prime}(u) d v d u-r^{2} d \Omega^{2} \tag{9}
\end{equation*}
$$

where r is taken as a function if v, u defined by

$$
\begin{equation*}
r+2 M_{0} \ln \left(\frac{r}{2 M_{0}}-1\right)=\frac{v-f(u)}{2} \tag{10}
\end{equation*}
$$

The metric for $v>0$ thus becomes

$$
\begin{align*}
d s^{2} & =\frac{r}{2 M_{0}} e^{(v-f(u)) / 4 M-r / 2 M}\left(1-\frac{4 M_{0}}{-u-4 M_{0}}\right) d u d v-r(v, u)^{2} d \Omega^{2} \tag{11}\\
& =\frac{r(v, u)}{2 M_{0}} e^{\frac{-r(v, u)}{2 M_{0}}} e^{(v-u) / 4 M_{0}} d v d u-r(v, u)^{2} d \Omega^{2} \tag{12}
\end{align*}
$$

$r(v, u)$ is a continuous function of v, u for all values of v, u, and thus this metric is a continuous non-degenerate, non-singular function of v, u.

The Penrose confomal transformation is obtained taking $v=\tan (V)$ and $u=\tan (U)$, and multiplying the resultant metric by $\cos ^{2}(V) \cos ^{2}(U)$ (ie making a confomal transformation). This gives us

$$
\begin{equation*}
d \hat{s}^{2}=\frac{r(v, u)}{2 M_{0}} e^{\frac{-r(v, u)}{2 M_{0}}} e^{(v-u) / 4 M_{0}} d V d U-r(v, u)^{2} \cos ^{2}(V) \cos ^{2}(U) d \Omega^{2} \tag{13}
\end{equation*}
$$

We have
$r(v, u)+2 M_{0} \ln \left(\left(r / 2 M_{0}\right)-1_{=}(v-f(u)) / 2=(v-u) / 2-2 M_{0} \ln \left(-1-u / 4 M_{0}\right)(14)\right.$
which implies that as $u \rightarrow-4 M_{0}$,

$$
\begin{equation*}
r \approx 2 M_{0}+e^{v / 2}\left(u+4 M_{0}\right) \tag{15}
\end{equation*}
$$

while for large r

$$
\begin{equation*}
r \cos (V) \cos (U) \approx \sin (V-U) \tag{16}
\end{equation*}
$$

Thus, the metric $d \hat{s}^{2}$ is a finite metric everywhere, with $-\frac{\pi}{2}<V<\frac{\pi}{2}$ and $-\frac{\pi}{2}<U<0$

The conformal diagram is given in Figure 1. \mathcal{J}^{+}and \mathcal{J}^{-}are future and past null infinity $(r=\infty) . I^{+}$is the singular (in the conformal space) future timelike infinity while I^{-}is past timelike infinity. I^{0} is spacelike infinity. All of the I are singular points in the conformal metric $d \hat{s}^{2}$.

Copyright William Unruh 2023

Figure 1: The Penrose conformal diagram for the black hole created by the collapse of a null shell of fluid.

