Physics 530
Schwartzschild Geometry

In 1916, shortly after Einstein published his theory of gravity, Karl Schwartzschild
gave the first solution to the equations. This solution was for both the empty
space Einstein equations, and for the equations with constant coordinate den-
sity of energy. The key feature which made the equations solvable was his
assumptions of spherical symmetry and time independence. In these notes
I will solve the equations assuming only spherical independence— the time
independence will come for free (Birkoff’s theorem) in 4 dimensional empty
spacetimes.

When one assumes spherical symmetry, one is assuming that the space-
time metric has three linearly independent Killing vectors 2, a = 1,3 which
satisfy the ”commutation relations”

Le,&y =€ (1)

where a, b, ¢ are taken to be an even permutation of the numbers 1,2,3 ( an
even permulation is one that can be obtained from the list 1, 2,3 by making
an even number of swaps of adjacent pairs of numbers.). The tensor

yP ="l (2)
has a zero Lie derivative.
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let us take b = 1 as an example, in which case we have
Le P = €565 + 6565 — €065 — €4l =0 (4)

since L, &4 = —L£,68 = &4

Thus, if we take part of the metric to be F(p)yA? where the function F
obeys L¢, F' = 0 this part of the metric will have zero Lie derivative.

We can define the 6, ¢ coordinates by choosing &' to define the ¢ co-
ordinate. First, since there are three Killing vectors, and they lie in a two
dimensional space, at each point some linear combination of the three must



equal zero. Choose those set points where &' = 0 and are continuously re-
lated to each other as the coodinate 6§ = 0. Define the ¢ surface as those
points which that § = 0 point is dragged to by the Killing dragging along
&', Label each point by the parameter along this Killing curve and call it
6. Then ¢ is defined by the parameter along the &' Killing curves. @ labels
each of these surfaces created by dragging the ¢ = 0 point.

This results in the tensor components for y42

=1 (5)
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Define the third coordinate, r, to be such that the area of these two
surfaces of symmetry are 47r?. Choose the fourth coordinate u so that the
"1” coordinate axis is a null vector. Since we have defined 6, ¢, r purely using
the symmetry, the u axis (0, ¢,r all constants) must be orthogonal to the
surfaces of symmetry, since it it were not, the projection of that coordinate
axis onto the surfaces of symmetry would pick out a unique direction in
that two dimensional space, which would not be consistant with spherical
symmetry.

Finally, we choose u so that the r coordinate axis (6, ¢, u all constant) is
a null vector. There will in general be two ways to do this, and we choose
u so that this is continuous throught the space. Again, having done this at
one point on the two sphere of symmetry, one can define it everywhere on
that sphere by rotation.

Again, since this choice is unique, the r coordinate axis must also be
orthogonal to the surfaces of symmetry. We finally obtain the metric

ds* = V(u, r)du® + 24 (u, r)dudr — r*(d6® + sin®(0)dg?) (8)

in these coordinates.
The inverse metric will be



with all other components either given by these by symmetry or are zero.

Evaluation of the Christofel symbols
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All the rest are 0.
We can now evaluate
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The key components are
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From the first we have that U is independent of r and is thus a function of
u only. Defining a new u coordinate by [ |[U|du (and assuming that U is of
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one sign only) we set U = +1. From the second equation, we then get that
V is also independent of u. From the third equation, we have

o

=1-= 25
v=1-2 (25)
where « is an integration constant. If we take t = u £ [ ld_rg dr we get the

metric '

2 QN 2 dr? 2( 102 .2 2
ds® = (1— —=)dt* — a7 (dO” + sin”(0)do?) (26)
r _a
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which for large r the correction of g;; should be 1+ 2® where ® is the New-
tonian potential —GyM/r (where . But this says that o = —2M (= 295M)
in units where G is also 1. Thus the metric is

2M
ds® = (1 — =—)du* + 2dudr — r*d? (27)
r
where dQ? = d6? + sin?(0)d¢>.
The two signs are not two separate solutions, but the same solution in
two different coordinates. If we start with

2M
ds® = (1 — =—=)du* + 2dudr — r*d)? (28)
T

and we definev=u+2f l_d—;'ﬂ, the metric becomes

2M
ds* = (1 — ==)dv* — 2dvdr — r*dQ* (29)
r
Ie, we get the above solution with the negative sign. We note that the
coordinate transformation only works for r > 2M. As r — 2M from above,

rt=/ l_d—;;M goes to infinity. Furthermore, if we look at a line » = au say,

T

this becomes the line 7 = av — 2a(r — 2M In(55; — 1) in r,v coordinates,
which says that v goes to infinity as r approaches 2M, le, a perfectly nice
line in u, r space becomes a line which approaches infinity assymptotically in
v space. Similarly a line which goes through r = 2M for finite v in v, r space,
goes to —oo in u,r coordinates. le, the region r < 2M, u is off at infinity in

r,v space, and r < 2M,v is at —oo in 7, u space.
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0.1 Schwartzschild

The above metrics are called metric in Eddington Finkelstein coordinates,
because neither Edington, nor Finkelstein ever wrote down this solution.
The found the coordinates that you would get if you defined 7 = u + r or
T = v — r respectively. The above metrics in the last section (with constant
M) were first written by Penrose in the 1960’s. It is by far the simplest
coordinates in which to solve for the spherical symmetric metric that I have
found. Until Penrose, people tended to avoid null coordinates— ie coordinates
for which one or more of the coordinate axes had null tangent vectors.

The first solution was by Schwartzscild in about about 5 months after
Eistein published his field equations. Schwartzscild at that time was fighting
on the eastern front against Russia, or rather was in hospital with the disease
that finally killed him. Instead of using the 6 coordinate, he used £ = cos(0)
so that the angular part of the metric was r? 1d_522 +(1—-£2)d¢?) so as to make
the determinant of the angular part r*. It was Droeste, a student, who wrote
it in the 0, ¢ coordinates we now use.

Take the above metric and define 7 = u + ﬁ. The metric then

becomes
2M dr?
ds? = (1 — “25)dr? - (17"2M) — 12(d6? + sin(0)2dg?) (30)
r _2M
2M 2M
o142 3.2 2/ 302 : 2 72\Y _ 2 _ 2
= dt* — dr* — r*(df” + sin(0)*d¢?)) " dt — QMdr ) (31)

which is what is usually called the Schwartzscild metric. Einstein was aston-
ished that Schwartzscild have found an exact solution so quickly.

0.2 Kruscal

One question is whether or not we can arrange coordinates such that r = 2M
is regular across both "horizons” (the ”singularities” at r = 2M. Until the
1950s, there had been intense arguments about what the apparent singular-
ities at r = 2M meant. While a student C Lanzos had already in the early
20’s pointed out that coordinate singularities could make the metric look
pathalogical (thing on r=0 in polar coordinates, where the metric compo-
nents go to 0), and desipte expolicit solutions (see Eddington and LeMaitre
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in the 20’s) confusion reigned supreme about what those that ”Schwartzschild
singularity” meant.
Note that

L 2M M peyen _ 2MeT oo (32)
r r r
Thus, if we define U = [e @7 and V = [emrdv, Then the line r = au
becomes

r(l1—2a)=v+4MIn(r/2M —1) = 4M(ln(£]/\'/[) —In(r/2M —1) (33)

— 4M In( ) (34)

24— 1)
or

r

V= Q(W — 1) [In(r(1 — 2a))] (35)

which is a regular curve through r = 2M. similarly a curve through r = 2m

in 7, v space is a regular curve through r = 2M and U = 0 in r, U coordinates.

Ie, the U,V coordinates seem to be mapping from the u,v coordinates

which make the both horizons regular. This suggests that we choose our
coordinates to be U,V rather than w,r or v,r. This leads to the metric

R
o  4Meat

ds dUdV — R(U,V)(d6* + sin®(0)d¢?) (36)

where R(U, V') obeys

B
2M

1)6% _ YU (37)

( I

(which is a regular function at V=0 or V = 0)

These coordinates are called the Kruskal coordinates. They were discov-
ered by Martin Kruskal, who showed them to John Wheeler, asking if they
might be of any interest. Wheeler then wrote up a paper, with Kruskal’s
name as the sole author, and sent it in to Physical Review. Kruscal was on
sabatical in France that year, and the first he knew of the paper was when
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he received the galley proofs. He suspected that Wheeler had done this, and
tried to get Wheeler to also put his name of the paper, and Wheeler refused,
saying that Kruscal had done all the work.

(The same transformation was also found by Peter Szekeres and published
in 1960 in a Hungarian Math journal.)

M.D. Kruskal, Phys. Rev. 119, 1743 (1960) and P. Szekeres, Publ. Math.
Debrecen, 7 285 (1960)

0.3 Vaiyda metric

Looking back at the Einstein equations we note that the only place that
the time derivative of V occurs is in the G%, term. If we allow M to be
a function of u, the only term in the stress energy tensor we need is 77,.
All other components will be zero. If we raise the second index, since g"** is
zero, the only term will be T"" = —&‘ULTS‘). But the r axis is a null vector.
Thus the energy momentum tensor is that of a perfect fluid with no pressure,
but with a flow of fluid along the null vector. Ie, this is a solution for either
ingoing or outgoing null fluid. In order that the null fluid density be positive,
we need dM/du to have the same sign as U. If we take M = MyO(u — up)
where O(u) is the Heavyside step function, then the fluid source is a delta
function shell. This would produce a metric which is just flat spacetime in
the interior, and is the Schwartzschild solution outside.
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