
Physics 530
Tensors

Tensors
A tensor is a linear function of vectors, either tangent vectors or cotangent

vectors. The main problem with learning tensors is the notation and how to
combine tensors into other tensors.

Thus, if we have a tensor T it means that it is a function of vectors– either
tangent, cotangent (gradiant) or both. Thus in the usual way we would write
a tensor as ,for example, a function of a tangent vector and a cotangent vector
T (V A,WB) To be a tensor, it would have to be a linear function (with real,
or in some cases complex, result) of both arguments

T (αV A + βṼ A,WB) = αT (V A,WB) + βT (Ṽ A,WB) (1)

T (V A, αWB + βWB) = αT (V A,WB) + βT (V A, W̃B) (2)

Notationally, instead of writing out the tensor in terms of dummy arguments,
one instead writes it out more compactly as TA

B so that in terms of the
dummy arguments

T (V A,WB) ≡ TA
BV AWB (3)

Ie, the TA
B means that T is alinear function of tangent vector, and a cotan-

gent vector. (Ie, the functional indices are the opposite of the argument).
This is in sympathy with the inner product UAXA between a tangent vector
and a cotangent vector.

UAXA is linear in XA. and thus this inner product can be regarded as a
linear function of the cotangent vector XA and thus, the tangent vector UA

can be regarded as tensor with one argument, a cotangent vector. The inner
product allows us to regard UA as a tengent vector to some curve, or as a
linear function of a cotangent vector. Which it is is a matter of context.

Similarly UAXB is also a linear function of the tangent vector UA. Thus
XB can be regarded as the gradiant of some function, or as a tensor function
of a tangent vector.

Given a tensor, and a coordinate system (a set of functions xi, i = 0..D−

1 or i = 1, D such that the equation xi(p) = xi(p0) has the unique solution of
p = p0. We then have the D gradient vectors at any point p of dxi

A and the
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D tangent vectors ∂A
i whis are tangent to the curves through p0 such that

γ(λ)p(xj 6=i(p0), xi = xi(p0) + λ. Ie, this curve is the ith coordinate axis.
Then dxj(γi(λ)) = dxi

A∂
A
γi
= δii and if

dfA∂A
i = ∂xif (4)

dfA =
∑

i

∂xif(p(x))dxi
A (5)

We can do the same for tensors

TA
B =

∑

i

jTi
jdxi

A∂
B
γi (6)

Tensor combinations
There are a number of combinations of tensors to make other tensors.

Any combination of tensors which are linear functions of the arguments is a
Tensor

a) Multiplying a tensor by a constant or a real function is a tensor

SA
B = f(p)TA

B (7)

b) Adding two tensors of the same arguments

SA
B = TA

B + UA
B (8)

c)Mutiplying tensors of different arguments

SA
BC

D
= TA

BU
D
c (9)

d)Tracing

SC = Y A
AC (10)

This is the trickiest of the lot, as the result has fewer arguments than
the tensor it is made from. The A in the right hand side is no longer the
placeholder for an argument. This operatiohn stems from the inner product
of a tangent and cotangent vector. TAUB is a two argument tensor (rule
c)But TAUA is a zero argument function, not a tensor. It is the inner product
between a tangent and cotangent vector.

2



Thus if

Y A
BC = sumαV

A
(α)W

(α)
B Q

(α)
C (11)

(α is just a label) then

Y A
AC ≡ sumαV

A
(α)W

(α)
A Q

(α)
C (12)

Ie, the trace is simply a generalisation of the inner product of a tangent and
cotangent vector.

Note that TAA means nothing. It is not a tensor and is undefined. The
components of a tensor are the tensorevaluated on the gradient of the coor-
dinates and the tangent vectors to the coordinate axis curves.

T i
jk = TA

BCdx
i
A∂

B
γi∂

C
γk (13)

The equaitons for the various tensor equations are identical, if you replace
indices like A,B,C with indicees like i,j,k and where repeated indices in upper
and lower postion are summed over.

Note that after Einstein, the summation over the indicees indicated a
trace is not explicitly stated. It is just notationally understood that if, for
componens an upper and lower index are the same, they are summed over.
Thus

∑

i

Y i
ij ≡ Y i

ij (14)

If one for some reason wants to sum over a repeated set of upper or lower
indicees, then the summation symbol is mandatory. This is not a tensor
operation

∑
i Y

ii is not the component of a tensor and is ”never” written as
Y ii. (Of course some people are weird and do it anyway. That is a way to
making mistakes and creating confusion).

Metric (cont)
g(p)AB is the metric tensor at point p. It gives the length of tangent

vector V A by the evaluation of the tensor on the tangent vector V into both
arguments of g

Length2(V ) = gABV
AV B (15)
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Note that this is not a tensor. However, gABV
B is a tensor with a single

tangent vector argument. Thus it is equivalent to some cotangent vector
gABV A ≡ UB If gAB is non-singular, (ie never maps a non-zero tangent
vector onto the zero cotangent vector) then this also maps cotangent vectors
onto unique tangent vectors (if gABV

A = gABW
A then by linearity gAB(V

A−

WA) = 0 when V A −WA 6= 0)
Thus there exists another tensor gAB such that V C = gBCUB or VC =

gABV
BgBC = (gABg

BC)V A for all vectors V A Thus the tensor

δCA = gABg
CB (16)

is the identity tensor. It converts a tangent vector into itself. Similarly it
converts a cotangent vector into itself.Thus tensor gAB is the inverse of the
metric. It also acts as a metric for cotangent vectors, allowing us to define a
length on cotangent vectors. Such a concept is a bit counterintuitive, since
it is not clear what the length of a gradient means.

In component form, this is
∑

k

gikg
jk = δ

j
i (17)

Because of the importance of the metric to physics, it is a very special
tensor. The equation gABV

B = UA is usually written as gABV
B = VA Ie one

gives the same name to the cotangent vector as sociated via the metric with
a tangent vector. They are clearly very diffe veryrent things– tangent vectors
and cotangent vectors or gradients are physically very differnt objects. But
the metric allows us to associate one with the other. Note that you have
often heard that the gradient is a vector (arrow) which points in a direction
perpendicular to the level surfaces of a function. This statement uses the
above relation between tangent vectors and gradients.

Note that for any tangent vector lying in the level surface of a function,
the inner product is

V AdfA =
d

dλ
f(γ(λ)) = 0 (18)

because by assumption the curve to which V is the tangent vector lies in a
level surface, ie a surface where f(p) all have the same value. Ie f(γ(λ)) =
const and the derivative is 0. This means that if UA = (df)A then

gABU
AV B = UBV

B = 0 (19)
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Ie, the tangent vector associated with the gradient is perpendicular (zero
metric product) to any vector lying in the level surface.

Note that in Relativity, there exists non-zero tangent vectors and cotan-
gent vectors such that their length is zero. Such vectors are called null-
vectors. They are the tangent vectors to curves which are the paths of light
rays. If one has a function whose gredient is a null vector, then the perpen-
dicular tangent vector to that level surface of the function lies in the surface
itself.

Since the metric associates a cotangent vector with every tangent vec-
tor, and vice-versa for the metric inverse, if we have a tensor SA

B say then
the function is SA

BWAV
B. Now we can define a new tensor S̃CBXCWB =

SA
B(gACU

C)V B where WA = gCAU
C This new tensor S̃CB is written as

SCB = SA
BgAC .

Copyright William Unruh 2023

5


