
Physics 407-07
Vectors

Let us consider a space of raw points, designated usually by the symbol
p. This space has nothing else defined on it– no metric, no topology. These
points are supposed to represent the points in space or in spacetime.

On this space, we can define two things, curves ( which are maps from the
space of the real numbers into the space of points) and functions ( which are
maps from the space of points into the real numbers). However, we are not
going to be interesed in just any such curves or functions, but in a subclass
of them, which I will call nice curves of functions. At present, it is unclear
what the definition of nice is, however the first condition we will put on
them is that if we take a nice curve, designated by γ(λ), and a nice function,
f(p), then the composite function from real numbers to real numbers, namely
f(γ(λ)), is differentiable. I.e., for all λ for which the the function is defined,
df(γ(λ))

dλ
is defined. Of course this is not yet sufficient to define what these

nice function or curves are. For example, we could take the nice functions to
be all functions, and then the nice curves would have to be constants (i.e.,
γ(λ) = p0 a constant point for all λ). We will soon find that we need or
definition of ”nice” functions to be a bit more restrictive than that.

However, even with this bare bones structure, we can already define two
different kinds of vectors, tangent vectors to a curve γ(λ) and cotangent (
essentailly gradient) vectors to the functions f(p), as little pieces of the curve,
and little pieces of the funtions.

We will say that two curvesγ(λ) and γ′(λ), both going through a point
p have the same tangent vector if for all nice functions f(p), the derivatives
are the same. I.e.,

df(γ(λ))

dλ
|λ=λ0

=
df(γ′(λ))

dλ
|λ=λ′

0
(1)

where γ(λ0) = γ′(λ′
0) = p the point through which both curves run.

The tangent vector to the curve I will designate by
(

∂
∂γ

)A
.

Similarly we can define the cotangent vector corresponding to the function
f with dfA and define it such that two functions f and f ′ have the same
cotangent vector at the point p if and only if for all nice curves γ(λ) going
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through the point p,

df(γ(λ))

dλ
|λ=λ0

=
df ′(γ(λ))

dλ
|λ=λ0

(2)

We can represent the tangent vector by a little arrow, which is the curve
γ(λ) from λ0 to λ0+1 with the arrow head at λ0+1. Usually we use ”straight
lines” but we have no idea yet what a ”straight line” means. That takes far
more structure on the space. At present, we can take any one of the curves
which have the same tangent vector to represent that tangent vector.

Similarly, we can represent the cotangent vectors by ”little pieces of a
representative function”. How do we represent that? By its level surfaces.
I.e., chose all points p such that f(p) = f(p0) and all points p such that
f(p) = f(p0) + 1 as representing the functions with the same cotangent
vector at p0.

On cotangent vectors, one has concept of addition. Namely if f(p) and
g(p) are two functions, then the cotangent vector to f(p) + g(p) ( which is
clearly also a nice function) is defined as the sum of the cotangent vectors to
f and g

d(f + g)A = dfA + dgA (3)

Similarly we can define the product of a real number times the vector as the
cotangent vector to the function multiplied by that number. If the number
is r, then

d(rf)A = r(dfA) (4)

Both of these definitions are consistant in that it does not matter which
representative function we take such that its cotangent vector is dfA and for
dgA, the sum is the same cotangent vector.

For tangent vectors we have problems. We can define the tangent vector
r times as big by defining the curve

γr(λ) = γ(λ0 + r(λ− λ0)) (5)

where γ(λ0) = p the point of interest, but there is no way of adding two
such curves. If one had two curves γ(λ) and γ′(λ), both going through the
point p ( and let us assume, without loss of generality that both curves went

2



through p at λ = 0) that if one defined a curve Γ(λ) which was supposed to
be a representative sum of the two curves, that

df(Γ(λ))

dλ
=

df(γ(λ))

dλ
+

df(γ′(λ))

dλ
(6)

for all nice f, but it is not clear that any such Γ exists. In fact with a perverse
enough definition of ”nice” functions, it need not exist. The problem of course
is that has no definition of the sum of two point.

In some sense, the cotangent vectors are more general than the tangent
vectors.

We see that there also exists a definition of the product of a tangent
vector and a cotangent vector. Given a tangent vector at a point V A and a
cotangent vector WA, we can define the product V AWA as

V AWA =
df(γ(λ))

dλ
(7)

where f and γ are chosen such that V A = ∂
∂γ

A
and WB = dfB. (Note that the

value of the subscript or superscript letter does not matter, it is its existence
that matters. However, since we will be defining other products of vectors,
in defining this product, we make sure that the subscript on the cotangent
vector is the same as the superscript on the tangent vector. )

0.1 Coordinates

Let us now restrict our space of discourse still futher. It is not clear what
this restriction really means, but historically it has proven to be very useful.

Let us assume that we can choose, at least over a subset of the ”Mani-
fold” of points we are interested in looking at, N nice functions, which I will
designate by {xi}, where i goes from 1 to N, or sometimes from 0 to N-1.
These functions are to be such that if we look at the set of points p which
obey the equation

xi(p) = xi
0 (8)

for all i, where xi
0 are a set of N real numbers, then there is at most one point

p which satisfies this in the subset of all points we are interested in. I.e.,
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the xi can be regarded as labels for the points, with a unique label for each
point p in the subset. These N functions are the coordinates for the point
p. Note that they are arbitary, in that I have said nothing about what these
functions are or how they are chosen, except that they are unique for each
point p.

Now we place a further restriction on our set of nice functions. I will
assume that the curve through the point p0 defined by

xi(p) = xi(p0) for all i 6= j (9)

xj(p) = xj(p0) + λ (10)

for specific choice of j, is also a nice curve. This curve, which I could designate
by γj(λ) is the jth coordinate axis. The tangent vector to this curve ( and
since it is by assumption a nice curve, it has a tangent vector) is designated

either by ∂
∂γj

A
or more generally by ∂

∂xj

A
. Note that while it looks like a

partial derivative, this is simply a symbol designating the tangent vector to
the curve which is the jth coordinate axis.

However, if we have a function f(p) expressed as a function of the coordi-
nate F (x) = f(p(x)), then the partial derivative of F is exactly the derivative

of f along the coordinate axis. I.e., ∂F
∂xi =

df(γi(λ))
dλ

. This is where the notation
comes from.

We will always assume that all of the spaces we study have such coordi-
nates, and that the definition of nice functions are such that such coordinates
exist. If a space has such sets of nice functions, mathematicians call such
spaces differentiable manifolds.

We can now define the sum of two tangent vectors. Consider two curves
γ and γ′ going through the point p0. Let us assume that for both curves
γ(0) = γ′(0) = p0. Then define a new curve

Γ(λ) = P ({xi(γ(λ)) + xi(γ′(λ))− xi(p0)}) (11)

where the function P ({xi}) is the point desigated by the set of coordinate
values {xi}. I.e., the sum curve is defined via the sum of the coordinates of
curves γ and γ′. Then the tangent vector to Γ is defined as the sum of the
tangent vectors to γ and γ′.

The curve Γ clearly depends not only on the curves γ and γ′ but also
on the coordinates which we have chosen. However it is possible to prove,
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because of the nice properties of the coordinates, that the tangent vector to
Γ depends only on the tangent vectors to γ and γ′.

We now have two different kinds of vectors, tangent and cotangent, de-
fined. ( in the older literature these are called contravariant and covariant
vectors). Note that while they are both vectors, they really have nothing
to do with each other. They are simply two different kinds of mathematical
and physical things that we can define. Just as curves and functions are two
different kinds of things, which really have little to do with each other, so are
tangent vectors (little pieces of curves) and cotangent vectors ( little pieces
of functions. )

0.2 Components

Given our coordinates, and out definitions of vectors, we can express the
vectors in terms of each other.

Consider the function f(p) defined near the point p0. Let us define another
function F(p) by

F (p) = f(p0) +
∑

i

∂f(P ({xi}))
∂xi

|{xi=xi(p0)}(x
i(p)− xi(p0)) (12)

It is possible to show that F(p) has the same cotangent vector as f(p) has at
the point p0. I.e., for all curves γ(λ), the derivative along the curve of these
two functions is the same at the point p0. This means that

dfA = dFA (13)

But

dFA =
∑

i

∂f(P ({xi}))
∂xi

|{xi=xi(p0)}dx
i
A (14)

since it is a sum with constant coefficients of the coordinate functions xi(p).
Thus we can write

dfA =
∑

i

∂f(P ({xi}))
∂xi

|{xi=xi(p0)}dx
i
A (15)
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The coefficients, ∂f(P ({xi}))
∂xi |{xi=xi(p0)} are called the components of dfA in the

coordinate system {xi}.
Similarly we can for any curve γ write

(
∂

∂γ
)A =

∑

i

dxi(γ(λ))

dλ

(

∂

∂xi

)A

(16)

Then the dxi(γ(λ))
dλ

are the components of ( ∂
∂γ
)A in the coordinate system {xi}.

Finally, we can see that

(
∂

∂xi
)Adxj

A = δ
j
i (17)

and thus

V AWA =
∑

i

V iWi (18)

This also shows that this product of the sums of components is independent
of which coordinate system one happens to have chosen, because the left had
side was defined without any reference to coordinates.

0.3 Metric

While the above structures are useful, in almost all of physics, another struc-
ture plays a crucial role, namely a metric. This is something which deter-
mines the size of things. The metric is defined as the generalisation of the
dot product of two tangent vectors. In particular, given two tangent vectors
V A and WB ( again the value of the superscript does not matter). We thus
define a function g of the two vectors

g(V A,WB) (19)

to the real numbers as the ”dot product” of two tangent vectors. We demand,
primarily be analogy with the dot product, that this metric be linear in both
arguments.

g(V A,WB + ZB) = g(V A,WB) + g(V A, ZB) (20)
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and that g be symmetric

g(V A,WB) = g(WB, V A) (21)

Now we define the length squared of a vector to be given by g(V A, V A). This
allows us also to define the dot product in terms of lenths

g(V A,WB) =
1

2

(

g(V A +WA, V B +WB)− g(V A, V B)− g(WA,WB)
)

(22)

Writing V A and WB in terms of coordinates components, we get

g(V A,WB) =
∑

ij

V iW jg(

(

∂

∂xi

)A

,

(

∂

∂xj

)B

) ≡
∑

ij

V iW jgij (23)

The numbers gij = g(
(

∂
∂xi

)A
,
(

∂
∂xj

)B
) are called the components of the met-

ric in the coordinate system xj. Note again that the metric was defined
independent of coordinates, and thus since the left had side is independent
of coordinates, so must the sum of the right hand side be, even though the
values of the coefficients clearly do depend on the coordinates.

0.4 Length of a curve

Given a curve γ(λ), the lenght of the curve from the point p1 = γ(λ1) to
p2 = γ(λ2) is defined to be

∫ λ2

λ1

√

√

√

√g(

(

∂

∂γ

)A

,

(

∂

∂γ

)B

)dλ (24)

=
∫ λ2

λ1

√

√

√

√

∑

ij

gij
dxi

dλ

dxj

dλ
dλ (25)

Note that because of the square root, the right side of this equation is inde-
pendent of the parameterisation λ we choose for the curve. I.e., the length
is function only of the curve between the two points and not of the parame-
terisation one uses along the curve.

Note that we will run into trouble if the expression for the length of the
tangent vector is negative, since then the square root would be imaginary. In
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this case one must fudge things. One usually defines the length of a curve by
taking the absolute value inside the square root, but this can run into trouble
if the argument alters in sign along the curve. One almost always ignores
such possibilities. One distinguishes the curves by the sign of the argument
of the square root, and keeps curves with different signs separate.

0.5 Straight Lines

Now that we have a notion of length, we can discuss what we mean by a
straight line. Euclid had the same problem, and he defined a straight line as
the shortest distance between two points. While this often works, in special
relativity, we know that for some straight lines ( e.g., timelike curves) the
straight line is the longest distance between two points.

Let us define a family of curves, γ(ǫ, λ) where the ǫ designates different
curves between two points, which I will assume are always located at λ1 and
λ2. Let the function D(ǫ) designate the distance between these two points
along the various curves. We will say that the curve γ(0, λ) is a straight line
between the two points if for all sets of curves γ(ǫ, λ) such that γ(0, λ) is that

same curve, that dD(ǫ)
dǫ

is zero. I.e., for all sets of curves, the given curve is
at a relative minimum, maximum, or inflection point. Note we will always
demand that the curves be nice curves.

Writing this in terms of coordinates, we have the expression

dD

dǫ
=
∫ λ2

λ1

d

dǫ

√

√

√

√

∑

ij

gij(xk(γ(ǫ, λ))
dxi(γ(ǫ, λ))

dλ

dxj(γ(ǫ, λ))

dλ
dλ (26)

Defining

S(ǫ, λ) =

√

√

√

√

∑

ij

gij(xk(γ(ǫ, λ))
dxi(γ(ǫ, λ))

dλ

dxj(γ(ǫ, λ))

dλ
(27)

we have
∫ 1

2S

∑

ij

(

∑

k

∂gij

∂xk

dxk

dǫ

dxi

dλ

dxj

dλ

+gij
d2xi

dǫdλ

dxj

dλ
+ gij

dxi

dλ

d2xj

dǫdλ

)

dλ (28)
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Since gij is symmetric, and since i, j, k are just ”dummy” summation vari-
ables, we can rename them in the various terms to get

∫ 1

2S

∑

k





∑

ij

∂gij

∂xk

dxk

dǫ

dxi

dλ

dxj

dλ
+
∑

j

2gkj
d2xk

dǫdλ

dxj

dλ



 dλ (29)

Integrating the second term by parts, and recalling that dxi

dǫ
is zero at λ1 and

λ2 (all the curves we are comparing are supposed to go through the same
points at their endpoints), this expression becomes

∫

∑

kj

dxk

dǫ

(

1

2S

∑

i

∂gij

∂xk

dxk

dǫ

dxi

dλ

dxj

dλ
− d

dλ

[

1

S
gkj

dxj

dλ

])

dλ (30)

Since we said that we wanted this to be zero for all sets of curves, the
only way we can do this is if each term multiplying any dxk

dǫ
for each value

of k and for each point along the curve must be zero. Otherwise one can
always choose a set of curves such that the integral is not zero. I.e., we get
the second order differential equation

d

dλ





1

S

∑

j

gkj
dxj

dλ



 =
1

2S

∑

ij

∂gij

∂xk

dxi

dλ

dxj

dλ
(31)

This is the geodesic equation.
This equation and the derivation can be simplified if we make a special

choice for the parameter λ. Namely, if we choose λ to be such that S = 1,
the S disappears from the above equation. This choice of the λ parameter is
usually designated by s (or sometimes by τ . Furthermore, if we choose this
parameterisation, then we have that

(

d

dǫ

∫

Snds

)

|ǫ=0 =

(

n

∫

Sn−1dS

dǫ
ds

)

|ǫ=0 = n

(

∫

dS

dǫ
ds

)

|ǫ=0 = 0 (32)

since along the solution curve S = 1. I.e., if we choose our parameter λ

correctly (i.e.,, to be equal to the path length, s), we can place an arbitrary
power of S in the integral and get the same equations of motion, and in
particular we can use n=2 to get rid of the horrible square root, in the
variation. This makes the equations much easier to derive, at the expense of
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not allowing an arbitrary parameterisation. Note that one has to choose this
parameterization after the variation of the integral (deriviative by ǫ).

Thus, if we choose this parameterization, the geodesic equation becomes

d

ds





∑

j

gkj
dxj

ds



 =
∑

ij

∂gij

∂xk

dxi

ds

dxj

ds
(33)

with the additional requirement that

∑

ij

gij
dxi

ds

dxj

ds
= 1 (34)

It is easy to show that this second constraint equation is consistant with the
second order equations above.

An example: Consider the metric

ds2 = dr2 + r2dθ2 (35)

Using the above we need to extremize the integral

d

dǫ

∫

(
dr

ds
)2 + r2(

dθ

ds
)2ds = 0 (36)

Let us first take the set of curves to be such that dθ
dǫ
=0. Then we have

0 =
∫

2(
dr

ds
)
d2r

dǫds
+ 2r

dr

dǫ
(
dθ

ds
)2ds (37)

= 2
∫

dr

dǫ
(−d2r

ds2
+ r(

dθ

ds
)2)ds (38)

and since dr
dǫ

is arbitrary ( except at the end points which was why the
endpoint contributions in the integration by parts disappeared), we must
have as our first equation that

−d2r

ds2
+ r(

dθ

ds
)2 = 0 (39)

Now choosing the set of paths so that dr
dǫ

is zero, we get

0 =
∫

2r2
dθ

ds

d2θ

ds2
ds (40)

= −2
∫

dθ

dǫ
(
d

ds

(

r2
dθ

ds

)

(41)
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which by the same reasoning on the arbitrariness of dθ
dǫ

gives

d

ds

(

r2
dθ

ds

)

= 0 (42)

The third equation is

(
dr

ds
)2 + r2(

dθ

ds
)2 = 1 (43)

The solution is

dθ

ds
=

L

r2
(44)

for some constant L and then

(
dr

ds
)2 = 1− L2

r2
(45)

which gives

s =
∫

dr
√

1− L2

r2

(46)

s− s0 =
√
r2 − L2 (47)

or

r =
√

(s− s0)2 + L2 (48)

Substituting into theequation for θ we have

θ − θ0 =
∫

L

(s− s0)2 + L2
ds = atan(

s− s0

L
) (49)

Note that if we choose s0 such that θ0 = 0, and define

x = r cos(θ), y = r sin(θ) (50)

we have

x = L, y = s− s0 (51)
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0.6 Inverse metric

We now have two different functions of a tangent vector which give a num-
ber. For any tangent vector V A, the function of ZB given by fV A(ZB) =
g(V A, ZB). Similarly for any cotangent vector UA we have the function
hUA

(ZB) = ZAUA is also a function from the set of vectors to the real num-
bers. Now, given a vector V A one can always find a cotangent vector UB such
that hUA

() = fV A(). To see this is most easily done using the components.

hUA
(ZB) =

∑

i

UiZ
i (52)

fV A(ZB) =
∑

i

(
∑

j

gjiV
j)Zi (53)

I.e., if we choose

Ui =
∑

j

gijV
j (54)

we see that both functions f and h give the same value for all values of
ZA. I.e., the metric allows us to associate a unique cotangent vector for
each tangent vector. Furthermore, it may allow us to associate a length to
cotangent vectors. I.e., if UA is assciated with V A and WB is associated
with ZB we can define a dot product g̃(UA,WB) = g(V A, ZB) However, it is
not true that this defines a metric for all cotangent vectors necessarily. For
example, if the UA associated with V A is the null vector, when V A is not
a null vector, then there will be cotangent vectors which have no tangent
vector as their source. The easiest case to see is if the metric g is zero for all
arguments. Then clearly each tangent vector has the zero cotangent vector
associted with it and for no non-zero cotangent vector is there any tangent
vector.

In everything we do we will assume that this is not true, but rather that
for each cotangent vector there is a unique, non-zero tangent vector which
gives that cotangent vector via the metric. I.e., for each non-sero UA there
exists a unique V A such that

Ui =
∑

j

gijV
j (55)
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This means that there must be another set of numbers, which I will designate
by gij such that if

Ui =
∑

j

gijV
j (56)

then

V i =
∑

k

gikUk (57)

This gives that for all vectors V A, we have

V i =
∑

kj

gikgkjV
k (58)

or
∑

kj

gikgkj = δij (59)

I.e., the matrix represented by the coefficients gik is the inverse matrix to the
matrix gik.

Thus the tangent metric and the cotangent metric can be used to map
tangent vectors to cotangent vectors or cotangent vectors to tangent vectors.

Consider a function f(p) and a curve γ(λ) such that γ(λ) lies entirely
withing the level surface of f . I.e., f(γ(λ)) = f(γ(λ′)) for all λ, λ′. Then

dfA
(

∂
∂γ

)A
= 0 and the tangent vector associated with dfA must be perpendic-

ular ( have zero dot product) with all of the tangent vectors which lie within
the level surface of f . This is the usual gradient vector as an arrow that
you have learned about in previous course. I.e., the gradient, as a cotangent
vector is defined even in the most primative structure of the theory, but the
association of a tangent vector ( an arrow) with the gradient requires the
existence of the metric.

We note that this can lead to some very strange situation. We will find
that there exist metrics ( e.g., the special relativisitic metric) such that a
vector can be perpendicular to itself (i.e., have zero length). This means
that the gradient vector, regarded as an arrow, can be a tangent vector
which lies within the level surface itself. I.e., a tangent vector can both be
tangent to the surface (i.e., to a curve which lies in the surface) and at the
same time be perpendicular to the surface ( have zero dot product with all
tangent vectors to the surface).
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0.7 Notation:

As with most physicists, I am lazy. I do not want to write additional sym-
bolism when more compact will do. Thus if a have a function of coordinates
f({xi}), instead of writing the partial derivative with respect to xk as ∂f

∂xk , I
will use the more compact notation

∂kf ≡ ∂f

∂xk
(60)

And sometimes I will use an even more compact notiation

f,k ≡ ∂kf (61)

this being even simpler to write. Of course it can also be confusing if you are
not used to the notation.

For the metric, if we define the length of a curve by s(λ) we know that

the length of a tangent vector with components dxi

dλ
as

(
ds

dλ
)2 =

∑

ij

gij
dxi

dλ

dxj

dλ
(62)

To specify the metric we could write out the above in detail. Since the value
of λ is irrelevant, one often simply removes all of the dλ and writes the metric
as

ds2 =
∑

ij

gijdx
idxj (63)

One thing to be careful of is to remember that since the metric is symmetric,
there will be two terms multiplying each dxidxj if i and j are not equal. Thus

ds2 = (1− 2M

r
)du2 + 2dudr − r2(dθ2 + sin(θ)2dφ2) (64)

has components of the metric given by

guu = (1− 2M

r
) (65)

gur = gru = 1 (66)

gθθ = r2 (67)

gφφ = r2sin(θ)2 (68)
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and all the rest of the components being 0. Note that gur is 1, not 2. Einstein
himself messed up in one of his notebooks, and confused himself for a year
( thinking that the flat spacetime metric in rotating coordinates was not a
solution of his equations) because he forgot this.
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