
Physics 501-25
Accelerated Detector

In special relativity, a detector with a constant acceleration follows a path
given by

t =
1

a
sinh(aτ) (1)

x =
1

a
cosh(aτ) (2)

Here a is the acceleration and τ is the proper time along the trajectory of the
detector. (we have dt = cosh(aτ)dτ ; dx = sin(aτ)dτ for small dτ . Then
dt2 − dx2 = (cosh2(aτ)− sinh(aτ)2)dτ2 = dτ2, which is just the expression for
the proper time along the path.

Note that for τ near 0,

t ≈ τ (3)

x ≈ 1

a
+

1

2
aτ2 =

1

a
+

1

2
at2 (4)

which is just the equation for an accelerated object.
(Note that I am using units in which c = 1 just as I used units in the quantum

parts so that h̄ = 1.)
The first thing is that for the detector, it is the proper time, not the time

t which determines its internal dynamics.Thus for the two level system, the
equation of motion for the annihilation operator of the two level system in the
Heisenberg equations of motion will be

σ− = σ0−e
−iEτ = σ0−e

−i(E/a)arcsinh(at) (5)

Secondly, the trajectory of the detector is x0 =
√

1
a2 − t2. which is a hyper-

bola in x t coordinates with assymptotes being the two null lines t± x = 0.
Thus if we have such an accelerated detector, the interaction Hamiltonian

will be affect the state of the detector and of the field(given again that |ψ, 0〉 =
|φ〉 |↓〉)
∫

HI |φ〉 |↓〉 = ǫ

[

∫

σ†
0e

iEτ(t′)
∑

i

(

Ai∂
′
tφi(t

′, x(t′)) +A†
i∂

′
tφ

∗
i (t

′, x(t′)
)

dt′

]

(6)

The Quantum field without interaction is

Φ0(t, x) =
∑

±

∫ ∞

0

Aω±√
2π2ω

eiωt±x +HermConj. (7)

In the case where the detector was at rest, the integral over t’ in the interac-
tion picked out the AEσ

†
0 amd A†

Eσ0 terms. If the detector is moving however,
both the temporal and spatial parts of the modes are important since both
change as the detector moves.
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Because the detector has proper time dependence, we can switch our inte-
gration to make the integration variable be τ rather than t.

We have dt′ = dt′

dτ dτ Also

∂t′φ(t, x(t
′)) =

dτ

dt′
∂τφ(t(τ), x(τ)) =

1
dt′

dτ

∂τφ(t(τ), x(τ)) (8)

and thus

∂t′φ(t, x(t
′))dt′ = ∂τφ(t(τ), x(τ))dτ (9)

It would be really easy if we could choose our modes φi(t(τ), x(τ)) such that
they went like eiωτ , but were still made up solely of temporal Fourier modes
with temporal dependence eiωt,since then the integral over τ would be easy.
Fortunately such modes exist.

I will here restrict myself to 1+1 dimensions, and to a massless (m = 0)
field. While the calculations are far easier there, they can be carried out almost
as easily for a massive field theory and in higher than 1 spatial dimensions.

What we would like is to have the modes φi go as e−iντ . Let us look at the
solutions of the field equations.

∂2t φ− ∂2xφ = 0. (10)

we can solve this with Fourier modes e−i(ωt−kx) with ω = |k| One thus has the
solutions e−i|k|(t−x) or ei|k|(t+x). Writing t and x in terms of τ we have these
solutions as

e−i|k|t(τ)−x(τ) = e−i(|k|(−e−aτ )/a (11)

e−i|k|(t(τ)+x(τ) = e−i(|k|/a(eaτ )/a (12)

Which is a bit of mess. We can certainly do the required integral, but there is
an easier way.

Let us define a new coordinate system, τ, ρ where

t =
1

a
sinh(aτ)eaρ (13)

x =
1

a
cosh(aτ)eaρ (14)

where ρ = 0 is the path of the detector.
Then we havethe metric given by

ds2 = dt2 − dx2 = (cosh(aτ)eaρdτ + sinh(aτ)eaρdρ)2 − (cosh(aτ)eaρdρ+ sinh(aτ)eaρdτ)2(15)

= e2aρ(dτ2 − dρ2) (16)

One problem is that for all ρ, eiaρ is positive, so this new set of coordinates
cover just the positive values of x. To also cover the negative values of x, define
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another coordinate ρ′ so that

t =
1

a
sinh(aτ)e−aρ′

(17)

x = −1

a
cosh(aτ)e−aρ′

(18)

These coordinates are a version of what are called Rindler coordinates, after
Wolfgang Rindler, a physicist who died a few years ago, and was responsible
for many of the ”paradoxes” that you have studied in your special relativity
course. It was named that by Steve Fulling, who, after having studied Parker’s
cosmological quantisation papers, got interested in flat spacetime. Einstein
and Rosen, in a footnote of their famous wormhole paper, had showed that a
coordinate change like the above was possible in flat spacetime. Rindler had
rediscovered it, and emphasized the similarity of this set of flat spacetime coor-
dinates to the Schwartzschild coordinates used by Schwartzschild in his solution
to Einstein’s gravitational theory, what we now call a black hole solution. The
ρ = −∞, τ = ±∞ surface, (t± x = 0), is similar to the horizon of a black hole,
r = 2GM/c2, t = ±infty, surfaces. (eaρ → r − 2GM).

Note that ∂τ t) is positive for values of τ and ρ, ρ′, and that ∂ρx and ∂rho′x
are also always positive for all values of τ and ρ, rho′.

Let us now go to null coordinates. Define

U = t− x; V = t+ x (19)

u = τ − ρ; v = τ + ρ (20)

u′ = τ − ρ′; v = τ + ρ′ (21)

Then we have

U = −1

a
e−au; U =

1

a
eau

′

(22)

V =
1

a
Eau; V = −1

a
e−au′

(23)

While u, v are only defined for x > 0 and |t| < x and u′, v′ are only defined for
x < 0 and |t| < −x, U and V are defined for all values of U, V Ie, Minkowski
flat space null coordinates are an analytic extention of the Either set of Rindler
coordinates for the right(+) or the left (-) regions. They are also defined so that
all increase for increasing t

The equations of motion for the field are given by

0 = ∂U∂V Φ(U, V ) = ∂u∂vΦ(u, v) = ∂u∂vΦ(u
′, v′) (24)

A set of solutions are therefor given by

Φ(U, V ) =

∫ ∞

0

Ãω−
√

4π|ω|
e−iωU +

Aω+
√

4π|ω|
e−iωV dω +HermConj (25)

3



Similarly using the u, v and u′, v′ coordinates, we have solutions.

Φ(u, v) =

∫ ∞

0

AΩ−
√

4π|Ω|
e−iωu +

AΩ+
√

4π|ω|
e−iΩvdΩ+HermConj (26)

Φ(u′, v′) =

∫ ∞

0

AΩ−
√

4π|Ω|
e−iωu′

+
AΩ+

√

4π|ω|
e−iΩv′

dΩ+HermConj (27)

These two are of course only defined where u, v or u′, v′ are defined, namely for
x > 0 or x < 0 and |t| < |x|.

Note that in each case,

∂tU = ∂t(V ) = ∂τu = ∂τv = ∂τu
′ = ∂τv

′ = 1 (28)

Thus we have that

< φ1υ, φ2(υ) = i

∫

[φ∗1(υ)∂tφ2 ∗ (υ)− φ2(υ)∂tφ
∗
1(υ)] dx (29)

= i

∫

[φ∗1(υ)∂tφ2 ∗ (υ)− φ2(υ)∂υφ
∗
1(υ)] dυ (30)

where υ stands for any of U, V, u, v, u′, v′.
Furthermore since the norm is the temporal part of conserved vector,

Jk(ψ1, ψ2) = i(ψ∗
1∂kψ2 − ∂kψ

∗
1ψ2) (31)

it does not matter what hypersurface the integral is evaluated over. (This is
just Gausses law). We can then take the hypersurface to be the null V=0
hypersurface.

This leads to the result that the normalisation factor needed to make the
modes orthonormal, is just that given above.

iThere is a theorem that if one mades a function f(t) out of only positive
frequencies f =

∫∞

0
alphaωe

−iωtdω, then f must be analytic for Im(t) < 0.

(e−iωt = e−iωRe(t)e−omegaIm(t) which goes to 0 for large ω.
Let us look at the mode

e−iΩv = (aV )iΩ/a (32)

This is well defined, except at U = 0 which has a branch cut. we can decide
in which direction to take that branch cut. Let us take it to extend into the
upper U plane, leaving a function which it analytic in thelower half U plane.
But a function which is analytic in the lower half U plane can be constructed
out of fourier modes which go as e−iωU with positive ω. Thus choosing the
branch cut in that way, we get a function which is created out of positive norm
Minkowski fourier modes.

Let us look at the above modes. For the V modes, since V = t + x, as V
increases, so does t (as long as say x(t) is timelike).

The problem with this function is at V = 0 where the function has a singu-
larity. We can make it analytic in the upper Im(V ) by deforming the integral
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path of V into the lower plane Ie, limλ→+0(V + iλ)±i
|κ|
a is analytic in the upper

half Im(V ) half plane and is made up of Fourier components e−iωV . This is
true independent of the sign of ±|κ|.

Let us look at the functions

φΩ(V ) = (V + iλ)iΩ/a (33)

φΩ(U) = (U + iλ)iΩ/a (34)

where Ω is real but of arbitrary sign. The iλ notation indicates that λ is positive,
and that one takes the limit of λ goes to 0 from the positive direction. The
singularity occurs at V = −iλ and as a result the functions are analytic and
bounded in the whole positive imaginary V plane for all real Ω. The norm is

φΩ, φ
′
ω >= i

∫

(φ∗Ω∂tφ
′
Ω − φ′Ω∂tφ

∗
Ω)dx (35)

= i

∫

(φ∗Ω∂V φ
′
Ω − φ′Ω∂V φ

∗
Ω)dV (36)

since ∂tV = ∂xV = 1.

φΩ, φ
′
ω >= i

∫

(φ∗Ω∂tφ
′
Ω − φ′Ω∂tφ

∗
Ω)dx (37)

= i

∫

(φ∗Ω∂vφ
′
Ω − φ′Ω∂vφ

∗
Ω)dv +

∫

(φ∗Ω∂vφ
′
Ω − φ′Ω∂ṽφ

∗
Ω)dṽ (38)

where v = τ + ρ and ṽ = τ − ρ′. Now,

φΩ(V + i(λ = +0)) = V iΩ/aθ(V ) + e−πΩ/a(−V )iΩ/a (39)

since near 0 the phase of V goes from 0 radians to π radians as V goes from
positive to negative values of V. Thus the phase of V, the imaginary part of
ln(V ) goes from 0 to π as V goes from positive to negative values. Since the
phase is multiplied by iΩ/a, we get that the amplitude for negative values of
V is smaller than positive by e−πΩ/a. If Ω is positive, then the amplitude for
negative V is exponentially smaller than for positive V. If Ω is negative, then
negative amplitudes are exponentially larger than for positive V.

We can now evaluate the norm.

< φΩ , φ′Ω >

=

∫ ∞

0

(aV )−iΩ/a∂V (aV )iΩ
′/a − ∂V (aV )−iΩ/a(aV )iΩ

′/a)dV (40)

+

∫ 0

−∞

e−π(Ω+Ω′)/a(a|V |)−iΩ/a∂V (a|V |)iΩ′/a − ∂V (a|V |)−iΩ/a(a|V |)iΩ′/a)dV(41)

= i(1− e−π(Ω+Ω′)/aai(Ω
′−Ω)i(Ω + Ω′)

∫ ∞

0

|V |i(Ω−Ω′)/a

|V | d|V | (42)

(43)
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But
∫ ∞

0

|V |i(Ω−Ω′)/a d|V |
|V | =

∫ ∞

−∞

ei(Ω−Ω′)ζ/adζ = 2πδ((Ω− Ω′)/a) (44)

where |V | = eζ .
Thus

< φΩ, φΩ′ >= 2πaδ(Ω− Ω′)(1− e−π(2Ω)/a = 2πδ(Ω− Ω′)
sinh(πΩ/a)

e−πΩ/a
(45)

Thus the Normalisation factor for these modes is N=eπΩ/(2a)√
(2Ω sinh(πΩ/a)

. (since both

Ωand sinh(πΩ/a) are odd functions of Ω, the quantity under the square root is
always positive)

For positive Ω, this mode is concentrated in the right Rindler Wedge (V > 0).
for negative Ω it is concentrated in the left wedge.

One can go through exactly the same procedure for the U modes. One gets

φΩ =
1

√

2Ω sinh(πΩ/a)
(eπΩ/(2a)θ(U) + e−πΩ/(2a)θ(−U))|aU |−iΩ/a (46)

so again for positive Ω the mode is dominant in the sector U > 0 and is smallest
in the U < 0 sector. For Ω < 0 the opposite is again true.

Since each of these positive norm modes can be written in terms of the
Minkowski positive norm ”Hamiltonian-diagonalisation” modes, the annihila-
tion operators of these modes will be linear combinations of the Minkowski
”Hamiltonian diagonalisation” Annihilation operators and have the same vac-
uum state |0〉. So, let us choose our φi to be these modes.

Φ =

∫ ∞

−∞

eπΩ/2a

√

2Ω sinh(πΩ/2a)2π

[

AΩv(e
−iΩ(τ+ρ) +A−Ωue

iΩ(τ−ρ))
]

+HC; x > 0(47)

=

∫ ∞

−∞

eπΩ/2a

√

2Ω sinh(πΩ/2a)2π

[

A−Ωv(e
−iΩ(τ+ρ′) +AΩue

iΩ(τ−ρ′))
]

+HC; x < 0(48)

The state defined by

AΩu |0〉 = AΩv |0〉 = 0 (49)

is exactly the same as the vacuum state defined by the usual Minkowski Anni-
hilation operators. Note that these states are defined for all Ω, not just positive
values. This is another example that ”positive frequency” is NOT a sensible
criterion for defining the modes corresponding to annihilation and creation op-
erators.

This can be inserted into the expression for the first order amplitude for the
detector. Since the detector lives solely in the region x¿0, we only need the
expression for the detector in the right hand wedge Let us choose the state to
be the Minkowski vacuum state. This is the state where particle detectors at
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rest seen nothing. Choosing the initial state of the field to be the Minkowski
vacuum state, the annihilation operators all give 0 on that vacuum state. The
detector is located at ρ = 0 . If T is large then the integral will pick out Ω only
near -E.

|ψ, 0〉 = |0〉 |↓〉 (50)

|δψ, T 〉 ≈ −iǫE e−πE/2a

√

2πE sinh(πE/a)

∫ T

0

eiEτe−iΩτA†
−Ω |0〉 dΩdτ (51)

The probability of detection will be

P↑ = 〈δψ, T | |↑〉 〈↑| |δψ, T 〉 (52)

= ǫ2
e−2πE/a

(1− e−2πE/a)

E

4π

∫

|
∫ T

0

ei(E−Ω)τdτ |2dΩ (53)

The first term is expected as the probability should grow as ǫ2. The second term
is just the Einstein-Bose thermal factor with temperature of a

2π . The third is

|
∫ T

0

ei(E−Ω)τdτ |2 =

(

sin((E − Ω)T/2)

E − Ω

)2

(54)

and

∫
(

sin((E − Ω)T/2)

E − Ω

)2

dΩ = πT/2 (55)

Ie, the probability grows linearly in time, which is what one would expect of a
random excitation probability.

The detector is excited at a constant rate, and with a factor that is just the
thermal factor times a ”cross section” for detection in flat spacetime.
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