
Physics 530-21
Assignment 2

1. Given a function f(p) and a set of coordinates xi(p) show that the two
functions

f(p) (1)
∑

i

∂f(p(x))

∂xi
|p0

(xi(p)− xi(p0)) (2)

have the same cotangent vector at the point p0. (p(x) is the point p in the space
corresponding to the coordinates x. Those partial derivatives are evaluated at

the point p0. Since ∂f(p(x))
∂xi |p0

are constants, by the definition of the sum of
cotangent vectors, this means that

dfA =
∑

i

∂f(p(x))

∂xi
|p0

dxi
A (3)

——————————————————–
Let

f(γ(λ)) = f(p(xi(γ(λ)))) (4)

Then

df

dλ
=
∑

i

∂if(p(x
i(γ(λ)))

dxi(γ(λ))

dλ
(5)

But the other function has

d

dλ

∑

i

∂f(p(x))

∂xi
|p0

(xi(γ(λ))− xi(p0)) =
∑

i

∂f(p(x))

∂xi
|p0

dxi(γ(λ))

dλ
(6)

which at the point p = p0 is the same.
———————————————————–
———————————————————–

2. Show that if xi and x̃i are two different coordinates , and γ(λ) and γ′(λ)
are two different curves through the point p0 with the point p0 corresponding
to the same value, λ = 0 in both cases, that the two curves defined by

Γ(λ) = p(xi(γ(λ)) + xi(γ′(λ))− xi(p0)) (7)

Γ̃(λ) = p(x̃i(γ(λ)) + x̃i(γ′(λ))− x̃i(p0)) (8)

have the same tangent vector at the point p0
—————————-
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d

dλ
f(Γ(λ)) =

d

dλ
f(p(xi(γ(λ)) + xi(γ′(λ))− xi(p0))) (9)

=
d

dλ
f(xi(γ(λ)) + xi(γ′(λ))− xi(p0)) (10)

=
∂

∂xi
f
(xi(γ(λ)) + xi(γ′(λ))− xi(p0))

d

dλ
(xi(γ(λ)) + xi(γ′(λ))− xi(p0) (11)

=
∂

∂xi
f
(p0)(

dxi

dλ
+

dx′i

dλ)
) (12)

=
∂x̃j

∂xi

∂f

∂x̃j
(p0)(

dx̃j

dλ
∂

xi

∂xj
+

dx̃′
j

dλ
∂

xi

∂xj
) (13)

But ∂xk

∂x̃j
∂x̃j

∂xi = δki which shows that the two are the same for all functions f.
=============================
This shows that while the definition of the addition of two tangent vectors is

defined via coordinates, the sum tangent vector thus defined does not depend on
which coordinates we use, although the curves Γ and Γ̃ are in general different.

As an example, consider the two curves in two dimensions with coordinates
x,y and r, θ

γ : (14)

x = λ (15)

y = 1 (16)

γ′ : (17)

y = 1 + 2λ (18)

x = 0 (19)

Now write those same two curves in terms of the coordinates r, θ where

x = r cos(theta)y = r sin(theta) (20)

Show that the sum curve Γ(λ) defined in the two coordinate systems differ, but
that at the point λ = 0 their tangent vectors do not.

———————————————————-
The second components are

r cos(θ) = λ (21)

r sin(θ) = 1 (22)

r′ cos(θ′) = 0 (23)

r′ sin(θ′) = 1 + 2λ (24)

or

r =
√

1 + λ2 (25)
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tan(θ) = atan(1/λ) (26)

r′ = 1 + 2λ (27)

θ′ = π/2 (28)

so in the first case the sum is

xs = 1 + 3λ (29)

ys = 1 + 2λ (30)

rs =
√

1 + λ2 + 1 + 2λ− 1 (31)

θs = atan(1/λ) + π/2− π/2 (32)

Then

f̃(r, θ) = f(r cos(θ), r sin(θ)) (33)

d

dλ
(f̃(rs, θs) (34)

= f((
√

1 + λ2 + 2λ)cos(atan(1/λ)), (
√

1 + λ2 + 2λ)sin(atan(1/λ))) (35)

We are going to take the derivative at λ = 0 so all we need is the first order
approximation for rs and θs

rs ≈ 1 + 2λ (36)

cos(atan(1λ)) =

√

1/(
√

1 + 1/lamda2) ≈ λ (37)

sin(atan(1λ)) =

√

1− λ2

(1 + λ2)
≈ 1 (38)

so

d

dλ
f̃ =

d

dλ
f((1 + 2λ)λ, (1 + 2λ)) =

d

dλ
(f(λ, 1 + 2λ) ≈ f(xs(λ), ys(λ) (39)

Ie, the two derivatives are the same at λ = 0
====================================

3. Assume that HA
B , LA

B
C and MAB are tensors, and f, g are functions.

Which of the following are tensors and why?
i)QA

B = HB
A

———————————————
Yes. Left is function of tangent vector assoc with A and cotangent with B,

while rhs has tangent associated with A and cotang with B.
=================
ii)R = HA

A

———————————————————
Yes, contraction on right to give scalar while left is a scalar.
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================
iii)TD

ABC = HD
AMBC

——————————————————
Yes, both sides are function of three tangent and one cotangent vectors, and

are linear.
=================
iv)TD

ABC = HD
A +MBC

————————————-
No. Not linear on right.
===================
v) RA = LB

A
B

—————————-
No. Different arguments on left and right. On right B is not a contraction,

but designates a quadratic function of a tangent vector. Not linear.
===============
vi) SA = LA

B
B − LB

B
A

——————————————
Yes, On left function of one tangent vector, and same on right. The B indices

indicate contraction, not function.
================
vii) TA = ∇BH

B
A

———————————————
Yes. Right is contraction on B, and single linear function of tangent vector.
===============
Is ∂iH

j
k the component of a tensor?

———————————————————–
No. Unless in special coordinate sysem where Γ are all zero.
================
What are the components of the expression below expressed in terms of

partial derivatives and Christofel symbols?

∇AH
A
B (40)

———————————————
∂iH

i
j + Γi

kiH
k
j − Γk

jiH
i
k

=================

4. Given coordinates r, θ, what are the tangent vectors to the curves defined

by the coordinate conditions expressed in terms of ∂
∂r

A
and ∂

∂θ

A

r(λ) = r0 (41)

θ(λ) = λ (42)

——————————————-

0
∂

∂r

A

+ 1
∂

∂θ

A
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Lengths a) 1 b)r
==============

r(λ) = λ (43)

θ(λ) = 5 ∗ λ (44)

——————————————————————

1
∂

∂r

A

+ 5
∂

∂θ

A

Lengths a)
√
26 b)

√
1 + 25r2

===================

r(λ) = 10λ (45)

θ(λ) = 50 ∗ λ (46)

——————————————————————

10
∂

∂r

A

+ 50
∂

∂θ

A

Lengths a) 10
√
26 b) 10

√
1 + 24r2

====================
What is the cotangent vector of the following functions

f(r, θ) = r2 (47)

———————————————————

dfA = 2rdrA + 0dθA

Lengths a) r2 b) r2

===================

f(r, θ) = r2 + θ2 (48)

——————————————————

dfA = 2rdrA + 2θdθA

Lengths a)
√
4r2 + 4θ2 b)

√

4r2 + 4 θ2

r2

=====================
In each case find the lengths of these various vectors for each point at which

they are defined if the metric is given by a)

ds2 = dr2 + dθ2 (49)
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and

ds2 = dr2 + r2dθ2 (50)

5) Giventhe metric

ds2 = ρ2dt2 − dρ2 (51)

solve forthe geodesicsof thismetricfor therelationsbetweenρ, tands
—————————————–
This is very similar to the problem done in class except for the change in

sign and the change in the names of the coordinates.

I =

∫

ρ2
dt

ds

2

− dρ

ds

2

ds

Varying with respect to t, we get

∫

2ρ2
dt

ds

dδt

ds
ds =

∫

d

ds

(

2ρ2
dt

ds

dδt

ds)ds− d
ds
(2ρ2 dt

ds
)δt

)

(52)

The first term is a complete integral and is evaluated on the boundaries . Assime
δt is zero on the boundaries. Since for an arbitary variation this variation is
supposed to be zero, we get

d

ds
(2ρ2

dt

ds
= 0

or

(2ρ2
dt

ds
) = const. = E

We have one more variable ρ abd we could either do the variation or use the
fact that s is defined such that

ρ2
dt

ds

2

− dρ

ds

2

= {±1, 0} (53)

(
dρ

ds
)2 =

E2

ρ2
− {±1, 0} (54)

dρ
ds

√

E2

ρ2 − {±1, 0}
= 0 (55)

Thus
∫

ρ
√

E2 − {±ρ2, 0}
dρ = s (56)

For a timelike geodesic This gives
√

E2 − ρ2 = s (57)

ρ2 = E2 − s2 (58)
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and

t =

∫

1

E2 − s2/ds
= ln(

E + s/2

E − s/2
) (59)

Ie, the timelike geodesics have only a finite range of s and have t go from −∞, ∞
while ρ goes comes out of ρ = 0 and goes back to ρ = 0

For a spacelike curve, we have

dρ

ds
=
√

E2 + ρ2/ρ (60)

The simplest case is to take E = 0, in which case ρ = 2s and t = const.
For E 6= 0, we get

E2 + ρ2 = s2 (61)

ρ2 = s2 − E2 (62)

Again ρ must start out as 0, but it increases to infinity as s goes to infinity.
Then

t = ln((s+ E)/s− E)) (63)

which again goes to -infinity as s goes to E or goes to infinity as s goes to infinity.
In fact thse coordinates are simply another set of coordinates for flat space-

time. Let T,Z be the usual coordinates for flat spacetime

ds2 = dT 2 − dZ2 (64)

Now define t, ρ as

T = eρsinh(t); Z = eρcosh(t) (65)

Then this gives the above metric. Clearly the geodesics of the T,Z metric are
easy.

Copyright William Unruh 2023

7


