
Physics 530-23
Assignment 2 Solutions

1) Linearized Equations:
Consider the metric

ds2 = −(1−
2M

r
)dt2 + (1 + β

2M

r
)(dx2 + dy2 + dz2) (1)

find the deflection of light as a funtion of β. (Keep terms only to lowest order
in M)

(The theory with β = 0 was Einstein’s original theory of gravity, while
β = −1 corresponds to the Nordstom theory)

Hint: You could do a sucsessive approximation by finding the path of a light
ray travelling in the x direction, along z=0, y=b for M=0. Find the equation
for the change in the tangent vector to the real path by integrating along the
above path. The angular change in direction of the tangent vector will give the
deflection angle.

—————————————
One firstly needs to write down the geodesic equation in this metric

d

ds
((1−

2M

r
)
dt

ds
) = 0 (2)

−2M
x

r3
dt

ds
− β2M

x

r3
((
dx

ds
)2 + (

dy

ds
)2 + (

dz

ds
)2)− 2

d

ds
((1 + β

M

r

dx

ds
) = 0 (3)

and similarly for y and z. Now let us assume that we start with the light ray
traveling in x direction, with z = 0, y = b, and the initial x = −∞. We take
dt
ds = dx

ds = 1 initi/opt/zoom/ZoomLauncherally. If M were 0 then this would

be true for the whole trajectory. If M is not zero, but M
b is very small, then the

change in dx
ds and dt

ds will be small (<< 2H
b ). However although dx

ds and dt
ds both

stay very near 1, dy
ds will be small. The deflection angle will then by dy/ds

dx/ds ≈ dy
ds .,

The equation for dy
ds is

2
d

ds

dy

ds
≈ −2M

y

r3
− β2M

y

r3
(4)

All of the rest of the terms will be of quadratic order in M. Thus

d

ds

dy

ds
≈ −M(1 + β)

b
√

x(s)2 + b2
3
)

(5)

where to lowest order x(s) = +s so

∆
dy

ds
≈ −M(1 + β)

∫

∞

−∞

b

(s2 + b2)3/2
ds (6)

= M(1 + β)
1

b

∫

∞

−∞

1

((s/b)2 + 1)3/2
d(s/b) =

2M

b
(1 + β) (7)
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For β = 1 we get Einstein’s result. For β = 0 we get what has been called the
Newtonian result (Einstein’s 1908 result, where it was just gtt that he changed),
and for β = −1 the Nordsstom result, no defection. Fortunately Froelich’s
attempt to measure in the 1914 eclipse in the Ukraine failed.

+++++++++++++++++++++++++++++++++++++++

2)

S̃i
j(x̃(x)) =

∂x̃i

∂xk

∂xl

∂x̃j
Sk

l(x) (8)

Show that if x̃i = xi + ξi(x). Find the change in the components of S to lowest
order in ξ.

————————-
We have essentially gone through this in class where Sij is the metric

S̃kl =
∂xi

∂x̃k

∂xj

∂x̃l

Sij (9)

≈ (δik + ∂kξ
k)(δjl + ∂lξ

j)Sij (10)

≈ Skl + Skj∂lξ
j + Sil∂kξ

i (11)

+++++++++++++++++++++++++++

3) Define the completely antisymmetric tensor, ǫABCD such that it flips sign
on any interchange of adjacent subscripts. In a coordinate system in which gij
is diagonal with only 1 or -1 on the diagonal, define ǫ0123 = 1. Argue that in a
general coordinate system, ǫ0123 =

√

|g|
———————————————-
The coordinate transformation of this will be

ǫ̃nmpq =
∂xi

∂x̃n

∂xj

∂x̃m

∂xk

∂x̃p

∂xl

∂x̃q

ǫijkl (12)

Now, ǫ̃nmpq and ǫijkl, so that ijkl and nmpq must both be permutations of 1234
with sign being the sign of the permution (if it is an even permutation, then
sign is +. and if odd, the sign is -).

Now consider the matrix Li
n = ∂xi

x̃n
Consider the term with nmpq = 1234

every term of ǫ̃nmpq will be plus or minus this. Each term of ǫ̃1234 takes one
coefficient of the matrix L from each column of the matrix, and from each
separate row, and multiplies them together, and then multiplies by the row
permutation chosen and adds them. This is just the definiton of the determinant
of L. So, ẽpsilon1234 will just be the determinant of L, and

ǫ̃mnop = det(L)ǫnmpq (13)

But

g̃kl = Li
kgijL

T j

l (14)

2



so

det(g̃kl) = (detL)2det(gij) = −det(L)2 (15)

since det(gij) = −1. Thus detL = ±sqrt|detgij | or

ǫ̃mnop = ±
√

|detgij |ǫnmpq (16)

+++++++++++++++++++++++++++++++

4.) Show that the null geodesics in the two metrics

ds2 = gµνdx
µdxν (17)

ds2 = eφ(gµνdx
µdxν) (18)

are the same (all of gµµ and φ are functions of the coordinates. (The affine
parameterisation along the geodesics will not be the same. Recall that the
affine parameterisation is such that the second order geodesic equation for the
null rays are the same as those for spacelike or timelike geodesics.)

——————————————-

L =

∫

eφ(gµν
dxµ

ds

dxν

ds
)ds (19)

where ds here is the afficne parameter, not the path length which is zero. Vary-
ing this gives us

δL =

∫

δeφ((gµν
dxµ

ds

dxν

ds
)) +

∫

eφδ((gµν
dxµ

ds

dxν

ds
)ds (20)

Since for a null curve (gµν
dxµ

ds
dxν

ds ) is zero, the first variation is zero. This just
leaves the second, which becomes

δL =

∫
[

−
d

ds
eφ

dxµ

ds
δµρ + eφ∂ρgµν

dxµ

ds

dxν

ds

]

δxρds (21)

From which we get the equations of motion. Now define λ =
∫

e−φds and the
equation becomes

e−φ

[

−
d

dλ

dxµ

dλ
δµρ + ∂ρgµν

dxµ

dλ

dxν

dλ

]

= 0 (22)

Thus expressed in terms of λ the solutions are independent of φ Ie the curves
are the same, expcept for the parameterization.

+++++++++++++++++++++++++++++++++++++++
5. The Flamm metric was rewriting of the spatial part of the Schwartzschild

metric 1
1−2M

r

dr2 + r2(dθ2 + sin2(θ)dφ2) by limiting the 4 dimentional metric

dw2 + dr2 + r2(dθ2 + sin2(θ)dφ2) (23)
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with the constraint that w is a function of r, ie w(r) What is w as a function of
r to give the above spatial metric of the Schwartzschild metric?

Note that one can define a regular spacetime metric by

ds2 = dt2 − (d(w(r))2 + dr2 + r2(dθ2 + sin2(θ)dφ2)) (24)

which is completely regular at r=2M.
—————————————
Let us look at the metric

ds2 = dw2 + dr2 + r2(dθ2 + sin(θ)2dφ2)

with w = w(r). The dw = w′(r)dr with w′ the derivative of w with respect to
its argument. Thus we want

w′2dr2 + dr2 + r2(dθ2 + sin(θ)2dφ2)

to be the spatial part of the spatial Schw. metric, or

w′2 + 1 =
1

1− 2M
r

(25)

w′ = sqrt
2M

r − 2M
(26)

This gives

w(r) =

∫

√

2M

r − 2M
dr = 2

√

2M(r − 2M)

where we have chosen the integration constant so that w = 0 when r = 2M We
can thus extend the solution to negative w by simply taking the negative square
root, or

r =
w2

8M
+ 2M. (27)

which is a parabola is w, r space. It is a smooth curve. Thus the Flamm metric
connects two versions of flat spacetime, one for w¿¿0 and one for w¡¡0.

If we change coordinates, so that we use w instead of r as the spatial coor-
dinate, we get

dr2

1−2M/r =
w2

8M
+2M
w2

8M

(wdw

4M)2
(28)

=
(w2 + 16M2)

w2

w2

16M2
dw2 =

(w2 + 16M2)

16M2
dw2 (29)

which is completely regular even at r=2M, and

r2 = (
w2

8M
+ 2M)2 (30)
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which is also regular everywhere.
Ie, the apparent singularity at r=2M is just a coordinate singularity. It is

like the singularity of the metric ds2 = R2dθ2 (R is a constant) if expressed in
coordinates x = R cos θ), y = R sin(theta). Then x2+y2 = R2, or y2 = R2−x2

and ds2 = dx2 + dy2 becomes

ds2 = dx2 + (
dy

dx
)2dx2 = (1 +

x2

R2 − x2
) =

R2

R2 − x2
dx2

Ie, just like the Schwartzschild metric, this seems to have singularities at x = ±R
rather than r = 2M . But that singularity is just a coordinate singularity. The
singularity in the temporal part of the Schw. metric is more serious, but also
turns out to be a purely coordinate singularity. It took General Relativists
about 40 years to realise this in all its ramifications although there were plenty
of hints there already by the 1920s.

6.a) The flat spacetime metric in polar coordinates is

ds20 = dt2 − dr2 − r2(dθ2 + sin(θ)dφ2) (31)

Defining u = t− r or du = dt− dr which gives dt = du+ dr , we have

ds20 = (dt+ dr)2 − dr2 − r2dΩ2 = du2 + 2dudr − r2dΩ2 (32)

dΩ2 = (dθ2 + sin(θ)dφ2) (33)

ηũũ = 1, etaũr = etarũ = 1, etaθθ = r2, etaφφ = r2sin(θ)2 (34)

.
c)If we have

ds2 = (1 + F (r))du2 + 2(1G(r))dudr − r2dΩ2 (35)

which we can always choose, for a spherically symmetric metric since the last
term is just the metric on the surface of a sphere where r is taken to the ”radius”
of the sphere (ir rather the square root of the area of the sphere over 4π). There
can be no terms like drdθ or drdφ or dudθ or ddφ since they would choose spacific
directions in the θ, φ directions and that would not be spherically symmetric.
Furthermore, any H(r)dr2 could allways be absored into a new definition of u.

Note also that any constant value of G(r) = C + rG̃(r) could always be
aborbed by defining û = du/(1 + C) Ie, G(r)/r must be finite at r = 0.

Thus huu = F (r) and hur = h(ru) = G(r).
d)The derivatives of the metric are symbols are

∂rguu = F ′(r); ∂rgur = G′(r), (36)

∂rgθθ = −2r, ∂φφ = −2rsin(θ2 (37)

∂θgφφ = 2r2sin(θ)cos(θ) (38)
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Since

Γijk =
1

2
(∂jgik + ∂kgik − ∂igjk

We have that the terms of

Γuur = −
1

2
F ′; Γuru = Γruu =

1

2
F ′ (39)

Γurr = −0; Γrru = G′Γrθθ = r; Γθrθ = −r; (40)

Gammarθθ = rsin(θ)2; Γθrθ = −rsin(θ)2 (41)

and all the rest are 0.
Also

gru = gur =
1

(1 +G)
(42)

grr = −1 + F/(1 +G)2; guu = 0 (43)

gθθ = −
1

r2
: gφφ = −

1

r2sin(θ)2
(44)

Since ηij is just flat spacetime, the curvature tensor of all terms which do
not contain F or G or their derivatives are zero.

If we want to lok at Rrr, The Riemann tensor componments must have
two r indicees . Given that the contraction contains gki that we contract into
R.... cannot have an r index, the only possibilities are that this must be gφφ or
gthetaθ. Ie

Rrr = Rθrθrg
θθ +Rφrφrg

φφ (45)

Substituting into the equation for Rθrθr and Rφrφr we get that this term is
proportional to G’. The vacuum equations thus say that G′=0. But we have
argues that G has no constant term, so this means that G(r) = 0 and gru = 1

If we look at

Rθθ = Rφθφθg
φφ + 2Ruθrθ = −F ′r + F = 0

or

F =
C̃

r
(46)

It will turn out that C̃ = −2M twhere M is the mass as determined by the
period of the circular orbital time far from r = 0., the metric is

ds2 = (1−
2M

r
)du2 + 2dudr − r2(dθ2 + sin(θ)2dφ2) (47)

If we define t = u+
∫

1

1− 2M
r

dr we get

ds2 = (1−
2M

r
dt2 −

dr2

1− 2M
r

− r2(dΩ2) (48)

which is exactly the Droeste form of the Schwarzschild metric.
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