
Physics 530-25
Assignment 3

1) Linearized Equations:
Consider the metric

ds2 = −(1−
2M

r
)dt2 + (1 + β

2M

r
)(dx2 + dy2 + dz2) (1)

find the deflection of light as a funtion of β. (Keep terms only to lowest order
in M)

(The theory with β = 0 was Einstein’s original theory of gravity, while
β = −1 corresponds to the Nordstom theory)

Hint: You could do a sucsessive approximation by finding the path of a light
ray travelling in the x direction, along z=0, y=b for M=0. Find the equation
for the change in the tangent vector to the real path by integrating along the
above path. The angular change in direction of the tangent vector will give the
deflection angle.

2)i)Consider the linearized metric

ds2 = dt2 + 2 ~J
ydx− xdy

r3
dt− (dx2 + dy2 + dz2) (2)

where J is a small constant and r2 = x2 + y2 + z2. Show that this obeys the
Einstein equations for a linerized metric such that hxt = Jy/r3; hyt = −Jx/r3,
and this obeys

∂ν h̄
ν
µ = 0; h̄µν = 0 (3)

——————————————————————
For the linearized metric, we want ∂ρh

ρ
σ = 0 as a coordinate condition, and

h=0. We raise the index with ηµν which in this is the same matrix as ηµν . Thus

hρ
t =

∑

ρ

ηρρhtρ = −htρ = −{0, Jy/r3,−Jx/r3, 0} (4)

so

∂ρht
ρ = ∂x(−Jy/r3) + ∂yJx/r

3 (5)

= 3Jyx/r5 − 3Jxy/r5 = 0 (6)

and similarly for the othe rows where nothing depends on t.
Then the Einstein equaiton is that hµν = 0 Since nothing depends on t, this

is just −∇2hµν . Now, htx = J∂y
1

r
and thus −∇2∂y

1

r
= −∂y∇

2 1

r
= −∂y0 = 0

for everywhere except at r = 0 and similarly for the hty term.
Ie this is a solution to the Einstein lineaized field equaitons.
==================================

1



ii) Change coordinates to

x = r sin(θ)cos(φ) (7)

y = r sin(θ)sin(φ) (8)

z = r cos(θ) (9)

and show that the metric now is

ds2 = dt2 − 2
J

r
sin(θ)2dφdt− (dr2 + r2(dθ2 + sin(θ)2dφ2)). (10)

Show that the proper time of particles travelling along the paths r = r0; Θ =
π/2; φ = ±ωt from φ = 0 to φ = ±π differ.

—————————————————–
I clearly chose theta to measure the angle from the equator not from the

pole. So sin ↔ cos.
Clearly the transformatio now the flat metric ηµν is

ds2 = dt2 − dr2 − r2(dθ2 − cos(θ)2dφ2) (11)

so we just need to translate off diagonal terms.

h̃tr = htx

∂x

∂r
+ hty

∂y

∂r
(12)

= J( cos(θ) sin(φ) cos(θ)cos(φ)∂r(1/r
2)− cos(θ) sin(φ) cos(θ)cos(φ) = 0(13)

h̃tθ = htx

∂x

∂θ
+ hty

∂y

∂θ
= 0 (14)

h̃tφ = 0 (15)

h̃tφ = Jy∂x∂φ− Jxpartialy∂φ (16)

= J/rcos(θ)2sin(φ)(−sin(φ))− Jcos(θ)2cos(φcos(φ) (17)

= J/rcos(θ)2 (18)

The proper time along a path with only a φ component of the velocity, its
proper time will be

1 = gtt(u
t)2 + 2gtφu

tuφ − gφφ(u
φ)2 (19)

Now dφ
dt

= uφ

ut = ω so

1 = (ut)2(1 + 2(J/r)cos(θ)2(±ω)− r2cos(θ)2ω2 (20)

or

(
ds

dt
)2± = (ut)−2 = (1 + 2(J/r)cos(θ)2(±ω)− r2cos(θ)2ω2 (21)

and

(
ds

dt
)+ − (

ds

dt
)− ≈

2J cos(θ)2/r
√

1− r2cos(θ)2ω2
(22)
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Ie it takes different proper times to travel the two directions around the object
at r=0. It is as if the space were rotating.

=====================================
Similarly show that particles travelling along the same paths in rotating

coordinates in flat spacetime also take different times.

ds2 = (1− Ω2r2)dt2 + 2Ωr2dtdϕ− (dr2 + r2(dθ)2 + sin(θ)2dϕ2 (23)

which is flat spacetime in polar coordiantes but with φ = ϕ− Ωt.
Ie, this metric acts as if the spacetime at radius r0 were rotating.
(J is the angular momentum of the source assumed to be pointing in the z

direction)
———————————————————
One gets the same effect in flat spacetime in rotating coordinates– the proper

time to go in the two different direction is different due to the rotation
========================================

3. Consider the metric

ds2 = dt2 − (1 +
2M

r
)dr2 − r2(dθ2 + sin(θ)2dφ2) (24)

Find the geodesic equations of this metric, Argue that θ = π/2 should be a
solution.

—————————————————————–

dt

ds
= E2 (25)

dφ

ds
= l/r2 (26)

The equations must be symmetric with θ → π − θ, and since we have a second
order equaiton for theta, if dθ

ds
= 0 initially and θ = π/2 it has nothing which

will choose what dieection it would deviate. So it must stay the same (θ = π/2
and dθ

ds
= 0.

Then we have ( with α being either ±1 or 0.

r/2M

r/2M − 1

dr

ds2
= E2 − α−

l2

r2
(27)

(
dr

dφ
)2(

dφ

ds2
)2 = ((E2 − α)/l2 −

1

r2
)/(1 + 2M/r) (28)

or

(
d(µ)

dφ
)2 =

1

(1 + 2Mµ)
(
E2 − α

l2
)− µ2) (29)
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If initally r = r0 >> 2M and dr
dφ

= 0 we have

0 = (
E2 − 1

l2
− µ2

0)/(1 + 2Mµ) (30)

E2 − 1

l2
= µ2

0 (31)

and thus

(
d(µ)

dφ
)2 = (u2

0 − µ2)/(1 + 2Mµ) (32)

Note that this independent of α, E, or l and depends only on µ0 the equation
is equivalent no matter whether the particle were light, tachyon, or orinary
matter. Ie, the motion would be the same for all.

Since the equations are the same, and since we assume that u0 << 1/2M ,
we can do successive approx.

First solve with M=0. Then the solution is

µ = µ0cos(φ)

Nowplug This into the Mµ term, so we have

1 + 2Mµ0 cos(φ)(dµ

dφ
)2 = (µ2

0 − µ2) (33)

µ ≈ µ0 cos(

∫

(1 +Mµ0 cos(φ))dφ) = µ0 cos(φ−Mu0sin(φ)) (34)

Atφ ≈ −π/2 and φ ≈ π/2 we get u=0, so φ − Mµ0 sin(−π/2) = π/2 and
φ−Mµ0 sin(π/2) = π/2 we get that the total deflection is 2Mu0 .

========================================
Find the equation for r(φ), with intial conditions at φ = 0 such that r =

r0 >> 2M and dr
dφ

= 0, and show that it is independent of the the velocity of
the particle, or if the particle was a massive or a massless particle. Coming in
from infinity and going out to infinity the particle is ”deflected”. What is the
angle of deflection?

4. i) Consider the metric

ds2 = dt2 − dz2 − (1 + 2h(t− z))dx2 − (1− 2h(t− z))dy2 (35)

Show that this is a solution to the linearized empty space Einstein equations for
an arbitrary function h.

—————————————– The only non-zero components of hµν are
hxx, hyy and they only depend on t and z, So ∂ρh

ρ
mu has to be zero, since the

one values for ρ are x or y. Also, hµν only has t and z derivatives, and is
(∂2

t − ∂2
x)hxx = 0. ==============================

ii) Show that the curve x = y = z = 0 is a geodesic of the above metric.
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——————————–
The equations of motion for

d

ds
(1 + hxx)

dx

ds
= 0 (36)

d

ds
(1 + hyy)

dy

ds
= 0 (37)

d2z

ds2
− 2h′(

dx

ds
)2 + 2h′(

dy

ds
)2 = 0 (38)

From the first one (1+hxx)
dx
ds

is constant, and since initially it is 0, it is always 0.

Similarly for y. For z since (dx
ds
) = (dy

ds
) = 0, we have d2z

ds2
= 0 and thus dz/ds = 0

if it is so at first. =================================
iii)Consider the metric

ds2 = (1 + ḧ(U)
(X2 − Y 2)

2
)dU2 + 2dUdZ − dX2 − dY 2 (39)

What are the components of gµν and gµν?
——————————————

guu = (1 + ḧ(U)
(X2 − Y 2)

2
) (40)

guz = gzu = 1 (41)

gxx = gyy = −1 (42)

===================================
If h = 0 this metric is flat spacetime in coordinates U = t− z. What are the

components of hµν .
————————————–

huu = ḧ(U)
(X2 − Y 2)

2
==========================================
What is the expression for associated with the background metric?
———————————-

ηuu = 1, ηuz = 1, etaxx = etayy = −1









1 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0









Then the inverse has
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







0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 1









and the determinant is -1 so

φ = (2∂u∂z + ∂2
z − ∂2

x − ∂2
y)φ (43)

==========================================
Show that hµν obeys the linearized Einstein equations and the gauge condi-

tion ∂ν h̄µ
ν = 0

The

ΓX
uu = ḧ(u)X (44)

ΓY
uu = −ḧ(u)Y (45)

ΓZ
uX = ḧ(u)X (46)

ΓZ
uY = −ḧ(u)Y (47)

ΓZ
uu = (

d3

du3
h(u))X2)/2− (

d3

du3
h(u))Y 2)/2 (48)

Show that this metric obeys the full non-linear Einstein equations.
———————————————-
The ΓΓ terms have contractions of the upper index of one Gamma with the

lower index of the other. But there are only upper indices of X,Y and Z, and
lower of X Y and u.Thus the only terms that can survive are ΓY

uuΓ
Z
uY ( and

similrly for Z) But this would leave three free indices at least with value u. But
the curvature is antisymmetric on at least two of its indices. and it cannot be
antisymmetric with three u indices. So all of the ΓΓ terms are 0.

This then leaves just the linear curvature equations. (Ie, ∂∂g type terms,
which are the linearized equation.

========================================
Ie, the linear solution is also a solution of the full equations.
Is {X = X0, Y = Y0, Z = Z0} a solution to the Geodesic equation?
—————–
No. For example the equation for X is

2
d2X

ds2
+ 2ḧX(

du

ds
)2 = 0 (49)

So only if du
ds

is 0 could the first term be 0. But we would have only u a function
of s and so its derivative could not be 0

(1 + ḧ(u)(X2 − Y 2)/2(
du

ds
)2 = 1
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so du
ds

is not 0
=========================================
Note that to at most linear order in h the two metrics are the same, just in

different coordinates.
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