
General Relativitiy
Field theory

Quantum Field Theory

The application of the previous theory to field theory is straightforward.
Instead of the index i, one takes the index to be the spatial point x and teh
sum converts to an integral over x. The Lagrangian, in flat spacetime is

L =
1

2

∫

(∂tφ(t, x))
2 − (∇φ · ∇φ)−m2φ)d3x (1)

with the momentum being

π(t, x) = ∂tφ (2)

and the Hamiltonian

H =
1

2

∫

(π2 + (∇φ · ∇φ) +m2φ2)d3x (3)

The inner product between two complex solutions to the equations are

< φ̃, φ >= i

∫

(π̃(t, x)∗φ(t, x)− φ̃(t, x)∗π(t, x))d3x (4)

= i

∫

( ˙
φ̃(t, x)

∗

φ(t, x)− φ̃(t, x)∗φ(t, x))d3x (5)

One can choose some arbitrary set of complex solutions, indexed by α

namely φα(t, x) which we demand that

< φα, φβ >= δαβ (6)

< φ∗
α, φβ >= 0 (7)

Then we can define the annihilation operators

Aα =< φα,Φ > (8)

where Π, Φ are the quantum operators which obey the field equations. Then
we can write

Φ =
∑

α

(Aαφα(t, x)− A†
αφ

∗(t, x)) (9)
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The Hamiltonian diagonalization is given by

∂tφω = iωφω (10)

Choose the modes

φ(t, x) = φk

e−ikx

√

(2π)3
(11)

and similarly for π. The equations of motion are

φ̇k = πk (12)

πk = −(k2 +m2)φk (13)

which gives

ω =
√
k2 +m2 (14)

The annihilation operator

Aωk = i

∫

π∗
kΦ(t, x)− φ∗

kΠ(t, x)
eikx

√

(2π)3
d3x (15)

The annihilation operators Aω,k also minimize the energy, and the state
annihilated Aωk|0〉 is the usual vacuum.

Let us now choose a more complex situation. Write the Lagrangian as

L =
1

2

∫

a(t)3((∂tφ)
2 − 1

a(t)2
(∇φ)2 −m2φ2)d3x (16)

This is just

1

2

∫

√

|g|gµν(∂µφ∂νφ)d3x (17)

the coordinate invariant Lagrangian for the scalar field in the cosmological
metric

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2) (18)
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The conjugate momentum will be

π = a3φ̇ (19)

to give a Hamiltonian

H =
1

2

∫

(
π2

a3
+ a(∇φ)2 + a3m2φ2)d3x (20)

The inner product is again

< φ, φ̃ >= i

∫

(π∗φ̃− φ∗π̃)d3x (21)

Choose the modes

φ = φk

e−ikx

√

(2π)3
(22)

and similarly for π. The Hamiltonian diagonalization at time t gives the
eigenvectors and eigenvalues

iωπωk = −(ak2 + a3m2)φωk (23)

iωφωk =
πωk

a3
(24)

ω =

√

k2

a2
+m2 (25)

ω depends on time. These modes are not solutions of the equations of motion
unless a is independent of time. However we can use the modes at the time
t at which they are defined as above as inital data for a complete solution.
In order to normalise the mode, we want

δ(k, k′) = i

∫

(π∗
kφ

′
k − φ∗

kπ
′
k)
∫

ei(k−k′)x

(2π)3
d3x (26)

= 2ωa3|φk|2δ(k − k′) (27)

or

φk =
1√
2ωa3

(28)
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The equations of motion in the Heisenberg representation can be written
for Φk(t) =

∫ 1√
(2π)3

eikxΦ(t, x) and similarly for Πk(t). At time t = t0 we

have the equation

Φ̇k(t) =
1

a(t0)3
Pik(t0) (29)

Π̇k(t) = −(a(t0)k
2 + a3(t0))Φk(t0) = −ω2a3(t)Φk (30)

Thus we can define the Annihilation operators corresponding to this
Hamiltonian diagonalisation at each time t.

Ak(t) < φk

e−i~k·~x

√

(2π)3
,Φ >=

√

a3ω

2
Φk −

i√
2ωa3

Πk (31)

where

Φk =
∫

Φ
eikx

√

(2π)3
d3x (32)

and similarly for Πk.
Then

dAk

dt
=

√

a3ω

2
Φ̇k −

i√
2ωa3

Π̇k + ∂t ln(
√
a3ω)(A†) (33)

= iωAk +
ȧ

a
(3− k2

k2 +m2a2
)A†

k (34)

and the Hamiltonian diagonaisation annihilation operator at time t+ δt is a
mixture of the annihilation operators at time t. If one starts in the vacuum
state at time t or its annihilation operators, it is not the vacuum state at time
t+ δt but is rather a squeezed state. Defining the the number of particles at
time t+ δt by the operator N(t+ δt) = A

†
k(t+ δt)Ak(tδt) where the state is

the vacuum state with respect to Ak(t)|0t〉 = 0

〈0t|N(t+ δt)|0t〉 ≈ δt2
(

ȧ

a
(3− k2

k2 +m2a2
)

)2

(35)
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As k → ∞, this approaches a term independent of k and depenent on a(t)

and its derivatives . When integrated over all ~k up to length K this diverges
as K3δt2. If one defines ones particles by Hamiltonian diagonalization, then
after the smallest instant of time, a vacuum state, a no-particle state, is
converted into one with and infinite number of particles in it. (and an infinite
energy compared to the minimum energy), most of those occuring at ultra

large ~K. which is clearly a wrong result.
This problem was recognized by Parker in the late 60’s to early 70’s. It

led, and still leads, to huge controversies as to what is meant by particles or
excitations in such a cosmological spacetime.

One approach is to change the definition of time. If we define a new time
with

τ =
∫

dt

a(t)
(36)

the so called conformal time, the Hamiltonian becomes

Hτ =
Π2

a2
+ a2(∇Φ)2 +m2a4Φ2. (37)

Now, define new field and conjugate momenta by

Φ =
Φ̂

a
(38)

Π = aΠ̂− ∂t(a)Φ̂ (39)

The new Hamiltonian action, which gives the same equations of motion for
Φ as the old Hamiltonian did becomes

Ĥ =
1

2
(Π̂2 + (∇Φ̂)2 + (m2a2 − ∂2

τa

a
− (

∂2
τa

a
)2)Φ̂2 (40)

A direct calculation shows that the equations of motion given by this Hamil-
tonian in terms of the time τ are the same as before. Defining h = ∂τa

a
,

we can calculate the Hamiltonian diagonalisation for this Hamiltonian from
which we find

ω̂ =
√

k2 +m2a2 − h2 − ∂τh (41)
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and the normalisation factor for the solutions are

φk =
1√
2ω̂

(42)

which gives

Âk(τ) =
1√
2
(
√
ω̂Φ̂k −

i√
ω̂
Π̂k) (43)

and

∂τAk = iω̂Ak +
∂τ ω̂

2

4ω̂2
A

†
k (44)

The number of particles after time δτ then becomes

〈0̂τ |Â†
k(τ + δτ)Âk(τ + δτ)|0̂τ 〉 ≈ O

(

δτ 2

k4

)

(45)

and the total expectation value of the total number of particles goes as
∫

k2dk
k4

for large k. This is finite as long asm is large enough . Ie, by simply redefining
the time, and by redefining the field strength and the conjugate momentum,
one can turn an infinite number of particles into a finite number. Does this
mean that this finite number is the true particle creation rate? The answer
is again no, because this transformation really has no physics behind it. It
is an arbitrary mathematical manipulation, a re-coordinateization of phase
space (from Pk, Qk to P̂k, Q̂k). Note also that if ma(τ) is small enough and
the factor approriate, ω̂ can become imaginary for small k and small a(τ).
One could make further redefinitions of the momentum and configuration
variables, dependent for example on k, so as to make the convergence at
large k even faster or to have have theˆphase space variables approach the
original phase space variables for small k . Thus the particle creation number
becomes a somewhat meaningless concept.

0.1 Appendix

Changing variables in Hamiltonian

In changing variables, one has two ”coordinate” choices. One is a space-
time coordinate choice (and in particular the time variable), and the other
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is cannonical transformation (ie a transformation of the vaiables one uses in
phase space– what the p and q are). Both transformations can significantly
alter the both the Hamiltonian, and the naive definiton of Hamiltonian di-
agonalisation.

The Hamiltonian action is

S =
∫

(
∑

i

pi∂tqi −H(p, q))dt (46)

To change configuration or momentum variables, and keep the solutions of
the equations of motion equivalent, we must preserve the form of this action.
Thus, for example if we change qi to qi = q̂iαα we must also change pi so
pi = 1

α
p̂i. Ie, one must preserve the first term in the action, the pi∂tqi terms,

so that the new phase space veriables have the same form .
If α depends on time, we can define

(pi∂tqi)dt =
1

α
p̂i∂t(αq̂i) = p̂i∂tq̂i + ∂t(ln(α))p̂iq̂i (47)

The last term must be incorporated into the Hamiltonian and is a function
of just p̂i and q̂i. Thus we have

Ĥ(p̂, q̂) = H(αp̂,
q

α
) + ∂t(ln(α))p̂iq̂i (48)

Another transformation one can make is to let

p̃i = pi + βqi (49)

q̃i = qi (50)

and we get

pi∂tqi = (p̃i − βqi)∂tq̃i = p̃i∂tq̃i +
1

2
(∂tβ)q

2
i − ∂t(βq

2
i )) (51)

The first term is just the usual term in the Hamiltonian action. The second
term is one that should be incorporated into the Hamiltonian, and the third
term is a complete derivative, and results in boundary terms in the action
integral. If the variations of the action are to be taken so that δq is zero on
the boundaries (necessary to get the usual Hamilton equations), then this
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third term will contribute nothing to the variation and can be eliminated.
Thus we have

H̃(p̃, q̃) = H(p̃− βq̃, q)− 1

2
∂tβq

2
i ) (52)

For a single degree of freedom, one can continue in this fashion, using the
second type of transformation to elimate cross terms (pq) in the Hamilto-
nian, (but at the price of introducing more complex configuration dependent
potentials) and the first to get rid of dependence in the Mass terms or the
potential terms, at the expense of introducing cross terms into the Hamil-
tonian. This alteration results in an assymptotic expansion. Eventually the
approximation, where we assume that the time dependent terms are actually
constant in time (Ie, the Hamiltonian diagonalisation) gets worse and worse
instead of better. Which choice gives a true definition of particles? Why
do we ever think of the field theory as if it could be described by particles?
Only a thorough understanding of what the concept of particles is supposed
to mean, physically, can answer such questions. And thus these are questions
which bedeviled (and still bedevil) the field.
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