
General Relativitiy
Curvature

Curvature

Consider two families of curves filling space, such that each set are derived
by Lie dragging one set by means of the other γ(λ) and γ̃(µ). This means
that the Lie derivative of one set of tangent vectors with respect to the other
is zero.

£ ∂
∂γ

∂A

∂γ̃
= 0 (1)

Now consider

DλDµV
A −DµDλV

A = lim
µ,λ→0

1

µλ
[Pλ(PµV

A(µ, λ)− V A(0, λ))− (PµV
A(µ, 0)− V A(0, 0))

−Pµ(PλV
A(µλ)− V (µ, 0))− PλV

A(0, λ)− V A(0, 0))]

= lim
µ,λ→0

1

µλ
((PλPµV

A(µ, λ)− PµPλV
A(µ, λ)) (2)

which is clearly linear in V A(0, 0) in the limit.
Now,

DλDµV
A −DµDλV

A = ηCξD(∇C∇DV
A −∇D∇CV

A) +£ηξ
D∇DV

A (3)

Since the last term is zero, we have that (∇C∇DV
A −∇D∇CV

A) is linear in
V A and is thus a tensor in that argument. We can thus write this as

(∇C∇DV
A −∇D∇CV

A) = RA
BCDV

B (4)

RA
BCD is the Riemann curvature tensor.
Thus the components are

∇i∇jV
k = ∂i∂jV

k + (∂iΓ
k
jl)V

l) + Γk
jl∂iV

l

−Γl
ij∂lV

k + Γk
il∂jV

l − Γm
ijΓ

k
mlV

l + Γk
imΓ

m
jlV

l (5)

Antisymmetrizing over ij and using the symmetery of partial derivatives and
the symmetry of the Γ we get that all the derivatives of V cancel, and are
left with

Rk
lij = ∂iΓ

k
jl − ∂jΓ

k
il + Γk

imΓ
m

jl − Γk
jmΓ

m
il (6)
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Recalling that

∂rgkm = Γkrm + Γmrk

Γkrm =
1

2
(∂rgkm+ ∂mgkr − ∂kgrm) (7)

Collecting terms we get

Rklij =
1

2
(∂i∂lgjk + ∂j∂kgil − ∂i∂kgjl − ∂j∂lgik)

+∂igkmΓ
m

jl − ∂jgkmG
m
il

+ΓkimΓ
m

jl − ΓkjmΓ
m

il (8)

We could reexpress the second line in terms of the Γ or in term of derivatives
of the metric. In either case it would be even messier.

Meaning of curvature

That the Lie derivative of tangents to the two sets of curves are zero,
means that the curves close. Ie, If on travels a distance δλ along the first
curve, and then ∆µ along the second, on gets to the same point as if one
travelled ∆µ along the second set first and then ∆λ along the the first.

Now, consider that one made V A to be parallel to itself along each of the
curves. Ie, one made DλV

A = 0 along the curve starting at λ = µ = 0. and
ending at µ = 0, λ 6= 0 The resulting vector will be parallel to V A(0, 0) along
γ. Then take that resultant Vector and parallel transport along the curve
γ̃ to the point λ, µ from λ, µ = 0. Now carry out the two transports in the
opposite order (ie along γ̃ first and then along γ to the same final point. One
gets a vector which is parallel to V A(0, 0). But it is not the same as the first
parallel vector. Instead the difference is proportional to RA

BCDV
BηAξDδλδµ

for small λ and µ.
Since parallelism preserves lengths, both vectors have the same lenth, but

point in different directions. Thus, curvature preserves lenghts but creates
Lorentz transformations. Ie, the two vectors are Lorentz transformations of
each other.

Symmetries

It will be useful in what follows to look at normal coordinates. We have a
general coordinate system {xi}. Consider a point {xi

0
} with tangent vectors

∂A
i 0

at that point. Let us assume that point p of interest has {xi} all equal
to 0. Now in the immediate vicinity of the point define

xi = yi − Γi
jk(0)y

jyk (9)

2



and let the metric tensor components in the y coordinates be designated by
g̃lm(y) where the˜desinates components in the y coordinates. Then

gAB = g̃lm(y)dy
l
Ady

m
B = gij(x(y))dx

i
Adx

j
B

= gij(x(y))
∂xi

∂yl
dyiA

∂xi

∂ym
dymB

or

g̃lm(y) = gij(x(y))
∂xi

∂yl
∂xj

∂ym
(10)

Taking the limit as all the y go to 0, we have

∂xi

∂yl
= δil

∂2xi

∂yn∂yl
= −Γ0

i
nl (11)

Then at the point p, (where all the coordinates x and y are 0) we have

∂g̃lm(y)

∂yn
=

∂gij(x(y))

∂xk

∂xk

∂yn
∂xi

∂yl
∂xi

∂ym

+gij(x(y))
∂2xi

∂yn∂yl
∂xi

∂ym
+ gij(x(y))

∂xi

∂yl
∂2xj

∂yn∂ym

∂g̃lm(y)

∂yn
(0) =

∂glm

∂xn
(0)− gil(0)Γ

i
nm(0)− gim(0)Γ

i
nl(0)

= 0 (12)

Ie, in the y coordianates, all of the first partial derivatives of g̃ij are zero,
and thus the Christofel symbols in this coordinate system are 0 at the point
p. The y coordinates are called Riemann normal coordinates.

Note that this also shows that the the Christofel symbols are not tensors
since if a tensor evaluated on its arguments in one coordinate system is zero,
then it is zero in all coordinate systems.

The Riemann tensor has a number of symmetries. Firstly it is clear from
the definition that

RA
BCD = −RA

BDC (13)

Since symmetries of components are symmetries of the tensor itself, we can
go into the above coordinate system where all the first derivatives of the

3



metric ( and thus all the Γs) are zero. Then

Rijkl = gimR
m

jkl = gim∂kΓ
m

jl − ∂lΓ
m

jk = ∂k(gim(Γ
m

jl − ∂lΓ
m

jk)

= ∂k(∂jgli − ∂iglj) + ∂l(∂jgki − ∂igkj) (14)

where I used that the derivative of the metric was zero, and defined

Γijk = gimΓ
m

jk =
1

2
(∂jgik + ∂kgij − ∂igjk) (15)

This gives

Rijkl =
1

2
(∂k∂jgil + ∂l∂igkj − ∂l∂jgik − ∂k∂iglj) (16)

This clearly satisfies

Rijkl = Rijlk

Rijkl = Rjikl

Rijkl = Rklij

Rijkl +Riklj +Riljk = 0 (17)

That last symmetry can also be written as

Rijkl +Riklj +Riljk − (Rikjl +Rijlk +Rilkj) = 0 (18)

which is completely antisymmetric in the last three indices.
In 4-D spacetime, the first two index symmetries state that for every ij,

there are 6 independent kl components, and similarly for ij for each kl. Then
if we regard the first two and last two indices as joint 6 dimensional indices,
the symmetry of interchange of these gives us (6x6-6)/2+6= 21 independent
terms. The final symmetry says that there is one additional constraints,
leaving us with 20 in total. (The last 3 indices must all be different and
the fourth possible value must be in the first place. But with the other
symmetries one can always put any of the 4 different indices into the first, i,
place). Thus there are 20 total number of possible independent components.

Since RABCDV
aWBUCXD = RijklV

iW jUkX l, if the components have
some symmetry (eg (RijklV

iW jUkX l = −RijklV
iW jU lXk in any coordinate

system for arbitrary vectors, then so does the tensor.
Bianci Indentities
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The Riemann tensor components are of the form

Rijkl = ∂∂g + ∂g∂g (19)

Then look at

∇R = ∂∂∂g + ∂∂g∂g + ΓR (20)

. where I have supressed the indices.
We go to the Riemann normal coordinate system where ∂g and thus Γ

are all zero at the point of interest.. Then the only terms that survive are
the ∂∂∂g terms. Let us now insert the actual indices.

∇i(Rjklm) = ∂i ((∂l∂jgkm − ∂m∂jgjl

−∂l∂kgjm + ∂k∂mgjl) (21)

Now look at

∇i(Rjklm) +∇jRkilm +∇kRijlm

−(∇j(Riklm) +∇iRkjlm +∇kRjilm) (22)

which is the complete antisymetric permutation of i, j, k. Expanding R in
terms of the derivatives of g, one of the indices of g will be either l or m That
means that two of i, j, k will be partial derivatives. But the commutators of
two ordinary partial derivatives is zero. Thus this expression will be zero.
This is the Bianci identity.

Since this is tensor symmetry, it will also be true for coordinates where
the Γ are not zero. Thus

∇ARBCDE +∇BRCADE +∇CRABDE = 0. (23)

Now we can contract this expression with gBD and recalling that ∇AgBC = 0
to get

∇ARCE +∇BRCA
B
E −∇CRAE = 0 (24)

Finally, contracting with gCE we get

∇AR− 2∇BR
B
A = 0 (25)
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or

∇B(−GB
A) = 0 (26)

where

RBD = gACRABCD = RA
BAD

R = gBDRBD

GAB = RAB −
1

2
gAB (27)

This tensor GAB is called the Einstein tensor and it is conserved. (A tensor
is conserved if the trace with respect to any of the indices of the tensor is
zero. )

Note that another tensor which is useful is the completely trace free cur-
vature.

CABCD = RABCD

−
1

2
(RACgBD −RAD gBC −RBC gAD +RBD gAC))

−
1

6
R(gAC gBD − gAD gBC) (28)

which is trace-free. (gACCABCD = 0). (Recall that δii = 4)
This is called the Weyl tensor, and also has the property that if g̃AB =

Ω2gAB, then the Weyl tensor C̃A
BCD for the confomally transformed metric

g̃AB is the same as for the original tensor CA
BCD defined for gAB (Note

that this is true only if one of the indicees is up and the others down. The
tensor with two or more raised indices is not the same for the conformally
transformed metric as for the original. . Note that CABCD is zero for all
dimensions less than 4.(The symmetries demands that all of the component
indices must be different from each other, and that requires are lest 4 different
indices) In three dimensions, RABCD can be written in terms of RAB and in
two dimensions both RABCD and RAB can be written in terms of R and the
metric alone.

Linearized curvature

Let us write in some coordinate system that

gij = ηij + hij (29)
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where the ηij are assumed to be constants in spacetime, and hij are assumed
all to be small, so we will keep only terms to first order in the various hij.

Then

gij = ηij − ηikηjlhjl (30)

as can be seen by

δij = gikgkj = ηikηkj + ηikhkj − ηikhklη
lmηmj +O(h2) = ηikηkj = δij (31)

In the curvature, all of the terms that go like ΓΓ will be second order in h

since Γi
jk is written in terms of derivatives of the h and thus is first order in

h, and products would be second order.
Also gim∂kΓ

m
jl = ∂kΓijk + O(h2) and thus the linearized curvature to

lowest order in h is the same as the above curvture in Riemann normal
coordinates

Rijkl =
1

2
(∂k∂jhil + ∂l∂ihjk − ∂k∂ihjl − ∂l∂jhik) (32)

The Ricci curvature is

Rjk =
1

2

(

∂k∂jh+ hkj − ∂k∂iη
ilhlj − ∂j∂iη

ilhlk

)

(33)

where h = ηijhij and = ηij∂i∂j
If we write h̄ij = hij −

1

2
hηij, then we have

Gij =
1

2
h̄ij − ∂i∂lη

lkh̄kj − ∂j∂lη
lkh̄li) (34)

If ηij is the Minkowski metric, then is like a wave equation, and the other
two terms are divergences of tensors. Since the small metric changes if one
performs coordinate transformations, this gives us hope that perhaps those
divergences can be set to zero, and the then Gij is just a wave equation.
(This is similar to electromagmetism, where the equation for Ai, the vector
potential, is of the form

Ai − ηij∂j∂kA
k = J i (35)

and the second term can be eliminated via a guage transformation.
The linearized equations for gravity were discovered by Einstein in 1915,

and represent waves of metric changes which travel at the speed of light (as he
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published in 1916). His calculations in 1915 (bending of light and perihelion
of Mercury) were done using the linearized theory.

There were arguments until the 1970’s as to whether or not gravitational
waves were real, or whether they could always be eliminated by coordinate
transformation “Do they travel at the speed of thought” as one physicist
stated. It was only in the 1970s that the argument died out in the face of
both theoretical and experimental (the change in orbit of a binary pulsar
which was just what General Relativity said) work.
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