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Geometric definitition of covariant derivative

In introducing the concept of the covariant derivative in courses in General relativity, the

procedure is often to introduct the connection Γi
jk as an extra object into the list of objects

defined in the spacetime of interest. As in Wald [1] or Carroll[2], this object is assumed

to have a variety of properties. If one demands that these symbols are symmetric in jk

and that the metric has a zero covariant derivative, one gets the usual Levi-Civita symbols.

However, the set of conditions seem somewhat artifical, and students are often confused as

to why they those assumptions are made. In particular it seems as though theories with

torsion (anti-symmetric parts to the connection) are just as reasonable and natural as the

usual definition.

I want to argue that the usual Christoffel symbols are in fact priviledged, and have a

natural geometric definition. Ie, any theory with a metric already has, for geometric reasons,

the symmetric connection. This geometric definition of the derivative can be proven to obey

the various conditions rather than postulating them.

The derivative of functions along curves is natural and in fact forms the basis for the

definiton of tangent and cotangent vectors. If we have functions f(p) from the points of a

space to real numbers, and curves γ(λ) of functions from the real line to points of the space,

one can define tangent vectors at a point of the space p as equivalance classes of curves

through the point such that two curves γ1(λ) and γ2(λ) have the same tangent vector iff

the derivative d
dλ
f(γ1(λ)) =

d
dλ
f(γ2(λ)) for all functions f. (Similarly, the cotangent vector,

or gradient, is the equivalence class of functions such that d
dλ
f1(γ(λ)) = d

dλ
f2(γ(λ)) for

all curves γ(λ)) I will use Penrose’s abstract index notation, so that V A simply denotes a

tangent vector (by the upper capital roman index) with the name ”V”.

Given that one has a set of tangent vectors, V A defined at the various points along a

curve γ(λ), one would like to define the derivative of this tangent vector along the curve.

But tangent vectors at two separate points of the spacetime cannot be added, and thus the

usual definition of a derivative

DγV
A = lim

ǫ→0

V (γ(λ+ ǫ))− V A(γ(λ))

ǫ
(1)

makes no sense since the difference of tangent vectors at two separate points makes no sense.

However, if the space has a metric, gAB, one can define geodesics between two points as

an extremal length curve between the two points. Using the definition of the length of the
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curve

s =

∫ λ2

λ1

√

|gABUAUB|dλ (2)

where γ(λ1) = p1 and γ(λ2) = p2, and demanding that the curve be extremal, one gets, in

a coordinate system, that the curve must obey the equation

d2xi

ds2
+ gil

[

∂jgkl −
1

2
∂lgjk

]

dxj

ds

dxk

ds
(3)

Only the symmetric part in j, k of those derivatives of the metric contribute, so we define

the usual Christoffel symbols by

Γi
jk =

1

2
gil [∂jgkl + ∂kgjl − ∂lgjk] (4)

That this expression for Γ occurs in the equations for the geodesic follow purely from the

geometric requirement that the geodesic be an extremal curve between the two point and

not as some generic definition of parallelism for vectors. The definition of the geodesic and

of these symbols does not depend on any other structure of the spacetime other than the

existence of a metric.

Define the derivative of a vector field geometrically. Consider the curve γ(λ) such that for

each point λ we have a vector V A(λ) defined at the point γ(λ). Without loss of generality,

I will be interested in defining the derivative of this set of vectors along the curve γ at the

point p = γ(0). choose for each λ near 0 an arbitrary one of the infinite number of curves

in the equivalence class which have V A(λ) as its tangent vector. Ie, for each λ choose a

curve γλ(µ) such γλ(0) = γ(λ) and that V A(λ) is its tangent vector at that point. For each

lambda construct another curve γ̃λ(µ) through γ(0) by the following procedure:

For each value of λ and µ join the point p = γ(0) to the point γλ(µ) by a geodesic. (if

there is more than one, choose the one that goes to zero length as ǫ and µ go to zero). Now

take the half way point along this geodesic according the length of the this curve. Join the

point γ(λ) to this midpoint by a geodesic, and extend this geodesic to double its length.

Define that end point as the point along a curve γ̃λ(µ). As µ goes to zero, this curve goes

to the point p = γ(0), since the geodesic from p to γλ(0) = γ(λ) is the same as the geodesic

from γλ(0)to the midpoint of tha first geodesic and doubling its length brings us back to the

original point p.

The tangent vectors to all of the curves γ̃λ at µ = 0 are thus all defined at the same point

p and one can define the derivative of these sets of tangent vectors all lying at the same
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FIG. 1: The translation of the curve γλ which runs through the point γ(λ) to the curve γ̃λ which

runs through the point p by constructing geodesic diagonals which intersect at their midpoints.

One constructs these diagonals for each point γλ(µ) to generate the point γ̃λ(µ). The tangent

vector to γ̃λ at P is then the geometric transport of the tangent vector to γλ at the point γ(λ).

point p. This derivative will be the covariant derivative of the tangent vectors V A defined

along the curve γ(λ).

Ie, if we define

PλV
A =

(

∂

γ̃λ

)A

(5)

the tangent vector to curve γ̃λ at the point p then, the geometric derivative of V A along the

curve γ is

DγV
A = lim

λ→0

PλV
A − V A(p)

λ
(6)

which is well defined since PλV
A and V A(p) are vectors defined at the same point p and can

thus be subtracted, and divided by λ.

To evaluate the components of this derivative in some coordinate system, we impliment

the above procedure in that coordinate system. Without loss of generality, we can define

the coordinates all to have value 0 at the point p. Now define

xi(λ, µ) = xi(γλ(µ)) (7)
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the value of the coordinates along the curve γλ at parameter µ. The geodesic equations are

d2xi

ds2
= −Γi

jk(x(s))
dxj

ds

dxk

ds
(8)

where s is the pathlength parameter. Solving for the geodesic from p to γλ(µ) and retaing

only terms to quadratic order in s we get

xi(λ, µ) ≈ W is−
1

2
Γi
jk(0)W

jW ks2 (9)

for some components W i and the midpoint lies at half that value for s, Keeping terms only

to the lowest order we get

W is ≈ xi(λ, µ) +
1

2
Γi
jk(0)x

j(λ, µ)xk(λ, µ) +O(s3) (10)

and the midpoint will lie at

xi
M ≈

1

2
(W is)−

1

8
Γi
jk(0)W

jW ks2 (11)

≈
1

2
xi(λ, µ) +

1

8
Γi
jk(0)x

j(λ, µ)xk(λ, µ) (12)

Now solving for the geodesic from γ(λ) to the midpoint we get

xi
M = xi(λ, 0) + U is−

1

2
Γi
jkU

jUks2 (13)

or

U is = xi
M − xi(λ, 0) +

1

2
Γi
jk(x

j
M − xj(λ, 0))(xk

M − xk(λ, 0)) (14)

The point along the curve γ̃λ(µ) lies twice as far along this curve than does the midpoint,

which is

x̃i(λ, µ) = xi(λ, 0) + 2U is− 2Γi
jkU

jUks2 (15)

= xi(λ, 0) (16)

+ 2

(

xi
M − xi(λ, 0) +

1

2
Γi
jk(x

j
M − xj(λ, 0))(xk

M − xk(λ, 0))

)

(17)

− 2Γi
jk(x

j
M − xj(λ, 0))(xk

M − xk(λ, 0)) (18)

= 2xi
M − xi(λ, 0)− Γi

jk(x
j
M − xj(λ, 0))(xk

M − xk(λ, 0))) (19)

This is a set of curves that go through the point p. The components of the tangent vector

to these curves is the derivative of the coordinate with respect to µ at µ = 0. The derivative
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of these vectors with respect to λ is just the derivative of the components, since the basis

coordinate tangent vectors do not depend on λ. Thus

(DγV )i = ∂λ∂µx̃
i(λ, µ) (20)

= 2∂λ∂µx
i
M − 2Γi

jk∂µx
j
M∂λ(x

k
M − xk(λ, 0) (21)

But

xi
M =

1

2
xi(λ, µ) +

1

8
Γi
jkx

j(λ, µ)xk(λ, µ) (22)

and we have

(DγV )i = ∂λ∂µx
i(λ, µ) + Γi

jk∂µx
j∂λx

k (23)

= ∂λV
i + Γi

jkV
j∂λx

k (24)

which is the usual metric definition of the covariant derivative.

This derivative is defined in a completely geometric fashion and impliments the intuition

that the opposite sides of a parallelogram (defined by its intersecting straight diagonals) are

parallel to each other. From this definition, it immediately follows that the torsion is zero.

(This arises because we used intersecting diagonals). The choice of the metric covariant

derivative is not one arbitrary choice amongst and infinite number of possibilities, but is the

connection naturally forced on one purly from the existence of the metric.

One can now extend the definition of the covariant derivative from tangent vectors to

other objects. Given any tensor, ie, linear function of tangent vectors, we can define the

transported tensor from the point γ(λ) to γ(0) by demanding that the the transported

tensor evaluated on the transported tangent vectors is the same as the original tensor on the

original tangent vectors. Ie, if we have a tensor T (V A, UA) of tangent vectors at the point

γ(λ), we can define the tensor PλT at the point γ(0) by demanding that

PλT (PλV
A, PλU

B) = Tγ(λ)(V
A, UB) (25)

for all V A, UB. Since a tensor is completely defined by its evaluation on arbitrary vectors,

this will completely define the tensor PT . Since cotangent vectors are tensors with a single

tangent vector as argument, this defines the transport of cotangent vectors as well, and the

transport of arbitrary tensors and thus of arbitrary tensors.
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The derivative of a tensor is then defined in the usual way

DγTAB = lim
λ→0

P(λ)TAB − T (0)AB

λ
(26)

From this definiton one can derive other properties of the covariant derivative of tensors–

linearity, product rule, etc– just as one can for functions It is not necessary to postulate

them, as is sometimes claimed in the literature.

While one can certainly define other notions of parallelism by adding extra tensors to the

definition of the derivative

D̂γV
A = DγV

A + SA
BV

B (27)

where S may depend on the curve γ (eg, be a tensor function of the tangent vector to

the curve), this definion makes clear that that that tensor S defines an additional type of

derivative, and that one always has the usual metric derivative defined in the theory as long

as one has a metric.
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