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ABSTRACT. 

The  rigorous solution for cylindrical gravi ta t ional  waves is given. For  the  
convenience of the  reader the  theory  of gravi tat ional  waves and their  production,  
already known in principle, is given in the  first par t  of this paper.  After  encoun- 
tering relat ionships which cast doubt  on the  existence of rigorous solutions for 
undula tory  gravi tat ional  fields, we invest igate  rigorously the  case of cylindrical 
gravi ta t ional  waves.  I t  turns  out t ha t  rigorous solutions exist and tha t  the  
problem reduces to the  usual cylindrical waves in euclidean space. 

I. APPROXIMATE SOLUTION OF THE PROBLEM OF PLANE WAVES 
AND THE PRODUCTION OF GRAVITATIONAL WAVES. 

It  is well known tha t  the approximate method of inte- 
gration of the gravitational equations of the general relativity 
theory leads to the existence of gravitat ional  waves. The 
method used is as follows: We start  with the equations 

-/~. v - -  1 ~ g , . J ~  = - -  T , . .  ( I )  

We consider tha t  the g., are replaced by the expressions 

g. ,  = a. ,  + u . , ,  (2) 
where 

~,v = I if /~ = v. 

= o  if ~ ¢ v ,  

provided we take the t ime co6rdinate imaginary, as was dotLo 
by Minkowski. I t  is assumed tha t  the %. are smal, i.e. 
tha t  the gravitational field is weak. In the equatiors the 
3`.. and their derivatives will occur in various powers. If the 
3`.. are everywhere sufficiently small compared to uaity one 
obtains a first-approximation solution of the equations by 
neglecting in (I) the higher powers of the 3`.. (~nd their  
derivatives) compared with the lower ones. If one introduces 
fur ther  the ~. ,  instead of the 3`.. by the relations 

- -  1 
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then (I) assumes the form 

G . . . .  - G . . . .  - ~ . . . .  ~ + v . o ,  ~ = - 2 T . , .  ( 3 )  

The specialization contained in (2) is conserved if one 
performs an infinitesimal transformation on the coordinates: 

X ! : x~ + ~ ,  (4) 

where the ~ are infinitely small but otherwise arbitrary 
functions. One can therefore prescribe four of the ~ or 
four conditions which the ~ must satisfy besides the equa- 
tions (3); this amounts to a specialization of the coordinate 
system chosen to describe the field. We choose the co- 
ordinate system in the usual way by demanding that  

~ o ,  o = o .  ( 5 )  

It is readily verified that  these four conditions are compatible 
with the approximate gravitational equations provided the 
divergence T~, ~ of T~ vanishes, which must be assumed 
according to the special theory of relativity. 

It turns out however that  these conditions do not com- 
pletely fix the coordinate system. If %, are solutions of (2) 
and (5), then the % / a f t e r  a transformation of the type (4) 

are also solutions, provided the ~ satisfy the conditions 

F ~  + ~'~ - }a . (~ .o  + ;~ o)],~ = o, 
o r  

e , ~  = o .  ( 7 )  

TI a ~:field can be made to vanish by the addition of terms 
like chose in (6), i.e., by means of an infinitesimal transfor- 
mation, then the gravitational field being described is only 
an apparent field. 

With reference to (2), the gravitational equations for 
empty  sp~ee can be written in the form 

°i} 
One obtains plane gravitational waves which move in the 
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direc t ion  of the  pos i t ive  xl-axis b y  t ak ing  the  ~¢, of the  fo rm 
~(xl + ix4)(  = ~ ( x l  - t)), whe re  these  ~ ,  m u s t  fu r the r  sa t i s fy  
the  condi t ions  

"~11 + i'~4 = o,] 

%1 + i~44 = 0,[ ' 
~:1 J r - i~24 = O, r (9)  

%1 + i%4 = o. J 
One Can acco rd ing ly  s u b d i v i d e  the  mos t  genera l  (progressing)  
plane g r a v i t a t i o n a l  w a v e s  in to  th ree  t y p e s :  
(a) pure  long i tud ina l  waves ,  

on ly  7n,  7~, ~y44 tim t r e n t  f rom zero, 

(b) half  longi tudinal ,  half  t r ansve r se  waves ,  

on ly  ~21 and ~24, or  on ly  ~al an d  ~34 d i f ferent  f rom zero, 

(c) pure  t r ansve r se  waves ,  

only  ~22, ~'23, ~33 are d i f ferent  f rom zero. 

On the  basis  of the  p rev ious  r e m a r k s  it can  nex t  be  s h o w n  
t h a t  e v e r y  w a v e  of t y p e  (a) or  of t y p e  (b) is an a p p a r e n t  field, 
t h a t  is, i t  can  be  o b t a i n e d  b y  an inf ini tesimal  t r a n s f o r m a t i o n  
f rom the  euc l idean  field (~,~ = v , ,  = 0). 

W e  c a r r y  o u t  the  p roof  in the  ex amp le  of  a w a v e  of  t y p e  
(a). Accord ing  to  (9) one  m u s t  set,  if ~ is a su i t ab le  func t ion  
of the  a r g u m e n t  x~ + iX4, 

hence also 
"Yll ----- (P, "}/14 = i(~, "Y44 = - -  (~. 

If one  now chooses  ~' an d  ~4 (wi th  ~'~ = ~3 = o) so t h a t  

~1 = X(Xl _[_ iX4), ~4 = i x ( x l  + i:~4), 

then  one  has 

~1.1 + }',1 = 2x',  ~1,4 + }4,1 = 2ix ' ,  ~4,4 + }4,4 = - 2x' .  

T h e s e  agree  wi th  the  va lues  given a b o v e  for 7 . ,  714, ~44 if one  
chooses  x'  -- ½-~. H e n c e  it is shown  t h a t  these  w a v e s  are  
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apparent .  An analogous proof can be carried ou t  for the 
waves  of type  (b). 

Fur thermore  we wish to show tha t  also type  (c) contains 
apparen t  fields, namely,  those in which ~22 = ~aa ~ o, ~2a = O .  

The corresponding %~ are yu  -- 744 # o, all others vanishing. 
Such a wave  can be obta ined by  taking }' = x, ~4 = _ ix, 
i.e. by  an infinitesimal t ransformat ion  from the euclidean 
space. Accordingly there remain as real waves  only the two 
pure t ransverse types,  the non-vanishing components  of 
which are 

722 ----- - -  "~/33, (Cl )  

o r  

7 3. (c2) 

I t  follows however  from the t ransformat ion law for tensors 
tha t  these two types  can be t ransformed into each other  b y  
a spatial  rotat ion of the co6rdinate sys tem abou t  the xl-axis 
through the angle rr/4. T h e y  represent  merely the decompo-  
sition into components  of the pure t ransverse  wave  (the only 
one which has a real significance). T y p e  ct is characterized 
b y  the fact  tha t  its components  do not  change under  the 
t ransformat ions  

X2 ! : - -  X2, ~'1 ! ~ ~'1, A~3 / : -  X3, X4 ! ~ X4, 

OF 

X3 f : -  - -  ~ 3 ,  X l  ! = W1, ~3~2 f = ~2~ K4 ! = 0C4, 

in cont ras t  to c2, i.e. cl is symmetr ica l  with respect  to the 
x,-x2-plane and the &-xa-plane. 

We now invest igate  the generation of waves,  as it follows 
from the approximate  (linearized) gravi ta t ional  equations,  
The  sys tem of the equat ions  to be integrated is 

. . . .  = - ( m )  

] 

Let  us suppose tha t  a physical  sys tem described by  T~ is 
found in the neighborhood of the origin of co6rdinates.  The  
~,-field is then determined mathemat ica l ly  in a similar way  to 
tha t  in which an electromagnet ic  field is de termined through 
an electrical current  system.  The usual solution is the one 
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given by retarded potentials 

- =__' ( I i )  
~'"P 271- J f 

Here r signifies the spatial distance of the point in question 
from a volume-element, t = x4/i, the time in question. 

If one considers the material system as being in a volume 
having dimensions small compared to r0, the distance of our 
point from the origin, and also small compared to the wave- 
lengths of the radiation produced, then r can be replaced by 
r0, and one obtains 

_ t t" ~T""-](t-"°)dv' 

O r 

I 
~ - I - f T , , d y e ( t - r ° ) .  (I2) 

271"10 

The ~,, are more and more closely approximated by a plane 
wave the greater one takes r0. If one chooses the point in 
question in the neighborhood of the xl-axis, the wave normal 
is parallel to the xt direction and only the components ~22, 
N23, 733 correspond to an actual gravitational wave according 
to the preceding. The corresponding integrals (I2) for a 
system producing the wave and consisting of masses in motion 
relative to one another have directly no simple significance. 
We notice however that  /'44 denotes the (negatively taken) 
energy density which in the case of slow motion is practically 
equal to the mass density in the sense of ordinary mechanics. 
As will be shown, the above integrals can be expressed 
through this quantity. This can be done because of the 
existence of the energy-momentum equations of the physical 
system : 

T,~, ~ = o. (13) 

If one multiplies the second of these with x2 and the fourth 
with ½x22 and integrates over the whole system, one obtains 
two integral relations, which on being combined yield 

fr ,& l O ' f  
- 20x42 x2~T44dv" (13a) 
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Analogously one obtains 

f T33d.-I a2 f 2 0 x 4  2 x 3 2 T 4 4 d v '  

I 0 2 f T2 d -2o  f x mT 4d.. 
One sees from this that  the time-derivatives of the moments 
of inertia determine the emission of the gravitational waves, 
provided the whole method of application of the approxi- 
mation-equations is really justified. In particular one also 
sees that  the case of waves symmetrical with respect to the 
xl-x2 and x1-x~ planes could be realized by means of elastic 
oscillations of a material system which has the same sym- 
metry  properties. For example, one might have two equal 
masses which are joined by an elastic spring and oscillate 
toward each other in a direction parallel to the x3-axis. 

From consideration of energy relationship it has been 
concluded that  such a system, in sending out gravitational 
waves, must send out energy which reacts by damping the 
motion. Nevertheless, one can think of the case of vibration 
free from damping if one imagines that, besides the  waves 
emitted by the system, there is present a second Concentric 
wave-field which is propagated inward and brings to the 
system as much energy as the outgoing waves remove. This 
leads to an undamped mechanical process which is imbedded 
in a system of standing waves. 

Mathematical ly this is connected with the following 
considerations, clearly pointed out in past years by Ritz and 
Tetrode. The integration of the wave-equation 

[B~ = - 4~rp 

by the retarded potential 

f q~ = r 

is mathematically not the only possibility. One can also do 
it with 

g~ = r 
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i.e. by  means of the " advanced " potential ,  or by a mixture 
of the two, for example, 

I ~" EP] ( t+r )  -Ir- EP](t--r)  dr. 
g~ -= 2 J r 

The last possibility corresponds to the case wi thout  damping,  
in which a s tanding wave is present. 

I t  is to be remarked tha t  one can th ink  of waves generated 
as described above which approximate plane waves as closely 
as desired. One can obtain them, for example, through a 
limit-process by considering the wave-source to be removed 
fur ther  and fur ther  from the point  in question and at  the 
same time the oscillating moment  of inertia of the former 
increased in proportion. 

II. RIGOROUS SOLUTION FOR CYLINDRICAL WAVES. 

We choose the coordinates Xl, x2 in the meridian plane in 
such a way  tha t  Xx = o is the axis of rotat ion and x2 runs from 
o to infinity. Let  xa be an angle coordinate specifying the 
position of the meridian plane. Also, let the field be sym- 
metrical about  every plane x2 = const, and about  every 
meridian plane. The required symmet ry  leads to the vanish- 
ing of all components  g,, which contain one and only one 
index z; the same holds for the index 3- In such a gravita- 
tional field only 

gll, g22 ,  g33,  g44, g14 

can be different from zero. For convenience we now take all 
the cobrdinates real. One can fur ther  t ransform the coOrdi- 
nates xl, x4 so tha t  two conditions are satisfied. As such we 
take 

g14 = O, [ 
g l l  = - -  g44. [ ( I 4 )  

I t  can be easily shown tha t  this can be done wi thout  intro- 
ducing any  singularities. 

We now write 

- -  g l l  = g44 = A , ]  

- g:,~ = C ,  j 
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where  A, B, C > o. 
lates t h a t  

In t e rms  of these quant i t i es  one calcu- 

( I ) B44 C44 I[B42 C42 
2 .Rll 2 gl,R = ~- -[- ~ 2 ~ -[- 

2A(R22  I ) A44 
B 2 g22R = - £  

2 A (  i ) A44 
-C- Raa - 2 gaaR = A 

-- B--~+ A k B  + 
B1C1 AI(B, clh]  

+ N K  + A , B  + - ~ ] J '  
C44 .A 11 Cll 

-t- - -  _ _  

C A C 
i [ C12 C4 2 

+ ~ [ c -~ - c-; 
2A19" , 2A4 2 ] 

+ A 2 ~ ;  ] '  

B44 An Bn - - +  
B A B 
i [ 2A12 2A4 2 

+ 2 [ A 2 A 2 
BI 2 B42 ] 

+ B z B 2 ' 

I [ B12 C12 
2 [ - ~ - +  ~ 

AI( I 
- - - +  A , B  +-d]  

<]! 
+ A k B  + C].] 

I [  BIB, CiC4 
- - ~  + c-- ~ 

A4(B1 

AI(B4 c & l  
+ A , B  + - g ] ] '  

2 (.R44 -- - 
I "~ Bn Cn 

e . R }  = ~ + 

B1C~ 
BC 

B4G 
+ N K  

B,4 G4 
2R,4 = B -  + C-  - 

(I6) 

where  subscr ip ts  in the  r igh t -hand  member s  denote  (lifter- 
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eutiat ion.  If we take  as field equat ions  these expressions set 
equal  to zero, replace the  second and third by  their  sum and 
difference, and introduce as new variables  

a = log A, ] 
½ log (B/C),p (15a) 

3" ½1og(BC),J 
we get 

1 - - 2o  3" -1 = o ,  ( 1 7 )  23"44 AI- ~ [ ~ 4  -~- 33"42 "@ ~ t  2 3"12 - -  20L13"1 

2(O~11 - -  O!44) -IT. 23"11 - -  23"44 -[- [~12 -~- 3"12 - -  ~42 - -  3"42 ] = O, ( 1 8 )  

~11 - -  ~44 -t- [~13"1 - -  ~4'~4-] = O, ( I 9 )  

23"ll  -[- 1 [~12  -t- 33"12 -t- ~42 - -  3"42 - -  2G~l'Y1 - -  20/43"4] = O, ( 2 0 )  

23"14 -t- [ ~ i ~ 4  -t- 3"13"4 - -  2o~13"4 - -  20~43"1] = O. ( 2 1 )  

The first and fourth equat ions of this group give 

3"1I - -  3"44 -Jr- (3"12 - -  3"42) = O. ( 2 2 )  

The subst i tu t ion  

3" = log 0", 0" = (BC)~, ( 2 3 )  

leads to the wave  equat ion 

0"11 - -  0"44 = O, ( 2 4 )  
which has the solution 

0" = f ( X l  At- X4) -[- g (X l  - -  X4), ( 2 5 )  

where f and g are a rb i t ra ry  functions. Eq. (18) reduces to 

Ogll __ O~44 .71- 1(~12 __ ~42 ...[- 3"42 __ 3"12) = O. (I8a) 

Equat ion  (I 7) then shows tha t  3" cannot  vanish everywhere.  
We mus t  now see whether  there exist undu la to ry  processes 

for which 3" does not  vanish. We note tha t  such an undula- 
to ry  process is represented,  in the first approximat ion,  b y  an 
undu la to ry  fl, tha t  is b y  a 5-function which, so far as its 
dependence on x, and also its dependence on x4 is concerned, 
possesses maxima and minima;  we must  expect  this also for 
a rigorous solution. We know abou t  3" tha t  e~ = ~ satisfies 
the wave  equat ion (24) and therefore takes  the form (25). 
F rom this, however,  the undu la to ry  nature  of this quan t i t y  
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does not  necessarily follow. We  shall in fact  show tha t  q, 
can have no minima. 

Such a min imum would imply  tha t  the functions f and g 
in (25) have minima. At  a point  (Xl, x4) where this were the  
case we should have ~'! = ~'4 = o, ~'n =>o, ~'44 ~ o .  Bu t  
b y  (I7) and (2o) this is impossible. Therefore  ~, has no 
minima, tha t  is it is not  undu la to ry  bu t  behaves,  a t  least in a 
region of space arbi t rar i ly  extended in one direction, mono- 
tonically. We  shall now consider such a region of space. 

I t  is useful to see wha t  sort  of t ransformat ions  of  xl and x4 
leave our  sys tem of equat ions  (I4) invariant .  For  this 
invariance it is necessary and sufficient t ha t  the t ransforma-  
tion sat isfy the equat ions  

021 _ 024 ] 

09;1 OX4 ' 

02, _ 024 

Ox4 Oxl ' 

(26) 

Thus  we m a y  arbi t rar i ly  choose 21(xl, x4) to sat isfy the 
equat ion  

0221 0221 
-- o (26a) 

Oxl 2 Ox4 ~- 

and then (26) will de termine  the corresponding 24. Since ev is 
invar iant  under  this  t ransformat ion  and also satisfies the wave  
equat ion,  there exists a t ransformat ion  where 21 is respect ively 
equal or proport ional  to e~. In the n e w  co6rdinate sys tem we 
have 

e~ = axl  

or ~, = log a -}- log Xl- (27) 

If we insert  this expression for ~, in ( I7)-(27)  the equat ions  
reduce to the equiva lent  sys tem 

~11 ~44 + i = - 1 o ,  ( 2 s )  
Xl 

and 

I B - - 3  al = ½x1(¢tl 2 + /342) 2xl (29) 

~4 = x1~1~4. ( 3 0 )  
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Equa t ion  (28) is the equat ion  for cylindrical waves  in a three- 
dimensional space, if xl denotes  the distance from the axis 
of rotat ion.  The  equat ions  (29) and (3o) determine,  for 
given/3, the funct ion a up to an (arbi trary)  addi t ive  constant ,  
while, b y  (27), "r is a l ready determined.  

In order tha t  the waves  may  be regarded as waves  in a 
euclidean space these equat ions  mus t  be satisfied by  the 
euclidean space when the field is independent  of x4. This 
field is represented by  

A = I ;  B = I ;  C = xl  2, 

if we denote the angle abou t  the axis of rotat ion by  x3. These 
relations correspond to 

a = o, 3 = -- logxl,  ~, = log xl, 

and from this we see tha t  the equat ions  (27)-(3o) are in fact  
satisfied. 

We have still to investigate whether  stationary waves  
exist, tha t  is waves  which are purely periodic in the time. 

For  3 it is a t  once clear tha t  such solutions exist. Al- 
though it is not  essential, we shall now consider the case where 
the var ia t ion of 3 with t ime is sinusoidal. Here  3 has the 
form 

3 = X0 + XI sin ~x4 + X2 cos ~x4, 

where X0, X1, X2 are funct ions of xl alone. From (30) it then 
follows tha t  a is periodic if and only if the integral 

f/31/~4dx4 

taken over a whole number  of periods vanishes. 
In the case of a s ta t ionary  oscillation, which is represented 

by  
= X0  + X I  sin ~x4, 

this condit ion is ac tual ly  fulfilled since 

f 3 1 ~ 4 d x 4  = f ( X o  t Av X I '  sin ¢ox4)coX 1 c o s  wx4dx 4 ~-- o. 

On the other  hand, in the general case, which includes the case 
of progressive waves,  we obta in  for this integral  the value 

l r X - ~  p 3 \  1-~-2 - -  X 2 X I ' ) o ~ T ,  
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where T is the interval  of t ime over which the integral i s  
taken.  This  does not  vanish, in general. At  distances xl 
from xi = o great  compared with the wave-lengths,  a pro- 
gressive wave can be represented with good approximat ion in 
a domain  containing m a n y  waves by 

= X0 -t- a sin ~0(x4 - -  X l ) ,  

where a is a cons tant  (which, to be sure, is a subs t i tu te  for a 
funct ion depending weakly  on xl). In this case XI = a cos ~0xi, 
X2 = -- a sin ~OXl, so t h a t  the integral can be (approximately)  
represented by -- ½a~o2T, and thus  cannot  vanish and always 
has the same sign. Progressive waves therefore produce a 
secular change in the metric. 

This  is related to the fact t h a t  the waves t r anspo r t  energy, 
which is bound up with a sys temat ic  change in t ime of a 
grav i ta t ing  mass localized in the axis x = o. 

Note . - -The second part  of this paper was considerably altered by me after 
the departure of Mr. Rosen for Russia since we had originally interpreted our 
formula results erroneously. I wish to thank  my colleague Professor Robertson 
for his friendly assistance in the clarification of the original error. I t hank  also 
Mr. Hoffmann for kind assistance in translation. 

A. EINSTEIN. 


