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ON GRAVITATIONAL WAVES.

BY
A. EINSTEIN and N. ROSEN.

ABSTRACT.

The rigorous solution for cylindrical gravitational waves is given. For the
convenience of the reader the theory of gravitational waves and their production,
already known in principle, is given in the first part of this paper. After encoun-
tering relationships which cast doubt on the existence of rigorous solutions for
undulatory gravitational fields, we investigate rigorously the case of cylindrical
gravitational waves. It turns out that rigorous solutions exist and that the
problem reduces to the usual cylindrical waves in euclidean space.

I. APPROXIMATE SOLUTION OF THE PROBLEM OF PLANE WAVES
AND THE PRODUCTION OF GRAVITATIONAL WAVES.

It is well known that the approximate method of inte-
gration of the gravitational equations of the general relativity
theory leads to the existence of gravitational waves. The
method used is as follows: We start with the equations

R#v - %ng = - Tuv- (I)
We consider that the g,, are replaced by the expressions
Zov = B + Vi (2)

where
8y =1 if u=u,
=0 if uv,

provided we take the time codrdinate imaginary, as was done
by Minkowski. It is assumed that the #,, are smal, i.e.
that the gravitational field is weak. In the equatiors the
Yu» and their derivatives will occur in various powers. If the
vu» are everywhere sufficiently small compared to uaity one
obtains a first-approximation solution of the equstions by
neglecting in (1) the higher powers of the v,, (¢nd their
derivatives) compared with the lower ones. If one introduces
further the %,, instead of the v,, by the relations

?uv = 'vi - %Bu»'Yaa)
VOL. 223, NO. 1333—4 43



44 A. EinsteiIN AND N. RosEN. {J. F. L

then (1) assumes the form

7‘411, aa T ;y;tv, av ;)7“1, ap + ?aa, wy — 2T;ul- (3)

The specialization contained in (2) is conserved if one
performs an infinitesimal transformation on the codrdinates:

x, = x, + &», (1)

where the £+ are infinitely small but otherwise arbitrary
functions. One can therefore prescribe four of the %,, or
four conditions which the %,, must satisfy besides the equa-
tions (3); this amounts to a specialization of the codrdinate
system chosen to describe the field. We choose the co-
ordinate system in the usual way by demanding that

Yua, « = O. (5)

It is readily verified that these four conditions are compatible
with the approximate gravitational equations provided the
divergence T,., . of T,, vanishes, which must be assumed
according to the special theory of relativity.

It turns out however that these conditions do not com-
pletely fix the coordinate system. If v,, are solutions of (2)
and (5), then the «v,,” after a transformation of the type (4)

Vo' = Yo + 8 F L (6)

are also solutions, provided the £+ satisfy the conditions

[_E”,V + &= %B#V<€a.a + g“ﬁ)]vv =0,
or

8 aa = 0. (7)

It a~-field can be made to vanish by the addition of terms
like chose in (6), i.e., by means of an infinitesimal transfor-
matio, then the gravitational field being described is only
an apparent field.

With reference to (2), the gravitational equations for
empty space can be written in the form

?uv, ac = O.
Yua, a = 0-} <8)

One obtains plane gravitational waves which move in the
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direction of the positive x;-axis by taking the ¥,, of the form
o(x1 + 1x4) (= o(x1 — t)), where these ¥,, must further satisfy
_the conditions
Y+ e = 0,]
¥a + Ya = 0,
Yor + 172y = OyJ'
Ya + Y3 = 0.

(9)

One can accordingly subdivide the most general (progressing)
plane gravitational waves into three types:
{a) pure longitudinal waves,

only ¥, ¥13, Y44 different from zero,
(5) half longitudinal, half transverse waves,

only ¥ and ¥4, or only 73 and 3 different from zero,
{(¢) pure transverse waves,

only s, 723, v33 are different from zero.

On the basis of the previous remarks it can next be shown
that every wave of type (a) or of type (b) is an apparent field,
that is, it can be obtained by an infinitesimal transformation
from the euclidean field (¥,, = v., = 0).

We carry out the proof in the example of a wave of type
(a). According to (9) one must set, if ¢ is a suitable function
of the argument x;, + x4,

Yu = ¢, Y = igp, Ve = — &,
hence also
Y = ¢, Yu = 19, Yo = — @.

If one now chooses ¢ and £ (with £ = £ = 0) so that
£ = xl(xr + ixy), £ = ix(x; + 7xy),
then one has
51,1 + E/,l = 2X,y 51,4 + 54,1 = 27/.le 54,4 + 54,4 = — 2x'.

These agree with the values given above for v11, yu, v44 if one
chooses x’ = 3¢. Hence it is shown that these waves are
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apparent. An analogous proof can be carried out for the
waves of type ().

Furthermore we wish to show that also type (¢) contains
apparent fields, namely, those in which 722 = ¥33 = 0, 723 = 0.
The corresponding v,, are yi1 = v # 0, all others vanishing.
Such a wave can be obtained by taking £ = x, & = — iy,
i.e. by an infinitesimal transformation from the euclidean
space. Accordingly there remain as real waves only the two
pure transverse types, the non-vanishing components of
which are

Yoz = T Vi (61)
or
Y23. ' (62)

It follows however from the transformation law for tensors
that these two types can be transformed into each other by
a spatial rotation of the codrdinate system about the x;-axis
through the angle 7/4. They represent merely the decompo-
sition into components of the pure transverse wave (the only
one which has a real significance). Type ¢ is characterized
by the fact that its components do not change under the
transformations

’ -7 A AR A
Xo = — Xag, Xy = Xy, X3 = Xz Xy = Xy,
or

I " PO N [ ~l__ an
X3 = — Xs, Xy = Xy, X2 = Xy, Xy = Xy

in contrast to ¢, i.e. ¢; is symmetrical with respect to the
x1-xp-plane and the x;—x3-plane.

We now investigate the generation of waves, as it follows
from the approximate (linearized) gravitational equations,
The system of the equations to be integrated is

¥ v, e — T 2T 2]
Ve o] (10)
Yoa, « = O.

Let us suppose that a physical system described by T, is
found in the neighborhood of the origin of coordinates. The
v-field is then determined mathematically in a similar way to
that in which an electromagnetic field is determined through
an electrical current system. The usual solution is the one
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given by retarded potentials
_l_f,__[T”]“—”d,,. (11)
™ Y

Here 7 signifies the spatial distance of the point in question
from a volume-element, { = x4/7, the time in question.

If one considers the material system as being in a volume
having dimensions small compared to 7,, the distance of our
point from the origin, and also small compared to the wave-
lengths of the radiation produced, then » can be replaced by
7, and one obtains

7;” = f[Tpv (l——1ﬂ)dV

2Try
or

1
Fur = _[fTuvdV](t~rn)- <I2)
2T¥y

The #,, are more and more closely approximated by a plane
wave the greater one takes 7,. If one chooses the point in
question in the neighborhood of the x;-axis, the wave normal
is parallel to the x; direction and only the components s,
¥a3, 733 correspond to an actual gravitational wave according
to the preceding. The corresponding integrals (12) for a
system producing the wave and consisting of masses in motion
relative to one another have directly no simple significance.
We notice however that Ty denotes the (negatively taken)
energy density which in the case of slow motion is practically
- equal to the mass density in the sense of ordinary mechanics.
As will be shown, the above integrals can be expressed
through this quantity. This can be done because of the
existence of the energy-momentum equations of the physical
system : '

Tpa, « = O. <I3)

If one multiplies the second of these with x; and the fourth
with %x,? and integrates over the whole system, one obtains
two integral relations, which on being combined yield

medV = £—fxz Tudv. (13a)
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Analogously one obtains

1 92
T33d1/ = — 3 x32T44dv,
2 9%4

1 9?
T23dV = — 2 x2x3T44du.
2 0%y

One sees from this that the time-derivatives of the moments
of inertia determine the emission of the gravitational waves,
provided the whole method of application of the approxi-
mation-equations is really justified. In particular one also
sees that the case of waves symmetrical with respect to the
%1—%2 and x1—x; planes could be realized by means of elastic
oscillations of a material system which has the same sym-
metry properties. For example, one might have two equal
masses which are joined by an elastic spring and oscillate
toward each other in a direction parallel to the x;-axis.

From consideration of energy relationship it has been
concluded that such a system, in sending out gravitational
waves, must send out energy which reacts by damping the
motion. Nevertheless, one can think of the case of vibration
free from damping if one imagines that, besides the waves
emitted by the system, there is present a second concentric
wave-field which is propagated inward and brings to the
system as much energy as the outgoing waves remove. This
leads to an undamped mechanical process which is imbedded
in a system of standing waves.

Mathematically this is connected with the following
considerations, clearly pointed out in past years by Ritz and
Tetrode. The integration of the wave-equation

Lle = — 47mp
by the retarded potential

¢ = f[p:l;t—T)dV

is mathematically not the only possibility. One can also do

it with
© =f|:p:|;t+r)dv,
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i.e. by means of the ‘‘ advanced "’ potential, or by a mixture
of the two, for example,

1 (Ledieen + Lodin
= Ef . dy.

The last possibility corresponds to the case without damping,
in which a standing wave is present.

It is to be remarked that one can think of waves generated
as described above which approximate plane waves as closely
as desired. One can obtain them, for example, through a
limit-process by considering the wave-source to be removed
further and further from the point in question and at the
same time the oscillating moment of inertia of the former
increased in proportion.

II. RIGOROUS SOLUTION FOR CYLINDRICAL WAVES.

We choose the cobrdinates x;, x; in the meridian plane in
such a way that x; = o is the axis of rotation and «» runs from
0 to infinity. Let x; be an angle coordinate specifying the
position of the meridian plane. Also, let the field be sym-
metrical about every plane x, = const. and about every
meridian plane. The required symmetry leads to the vanish-
ing of all components g,, which contain one and only one
index 2; the same holds for the index 3. In such a gravita-
tional field only

Zu, o2, Z33, L4, Z14

can be different from zero. For convenience we now take all
the coordinates real. One can further transform the coérdi-
nates x;, x5 so that two conditions are satisfied. As such we
take

L = o,

Lu = — Hus. (14)

It can be easily shown that this can be done without intro-
ducing any singularities.
We now write

!
S
|
.
o

— fn =
— g = B,

r (15)
— gu = C, J
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where 4, B, C > o.

lates that

(Rn - gnR)

I

- By Cuu [B 1By

[J. B. L

In terms of these quantities one calcu-

B C. Bs | C?
Fre-ilEe e
BiCy A4(B4 G
BC + A tT c

e+ 55+ 0]
+BC+A B+C '

1 2A12 2A42
ri2r - (16)

B Cy
[B2+5
B, G, é Zil+9

~ B Ta\B T
+B4C4_|_A4 B4+ )]

BC
G Cs
B? C?

Bll C]]
+ <

where subscripts in the right-hand members denote differ-
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entiation. If we take as field equations these expressions set
equal to zero, replace the second and third by their sum and
difference, and introduce as new variables

a = logd,
5 = & log (BC), - (152)
v = 3 log (BC),
we get
2v4 + (B 4 372 4 B2 — v — 2aum1 — 2a4v4] = 0, (17)
2(0111 - 0144) + 2y — 2vu + [312 + 7% — B4 — ’742] = 0, (18)
B — Bu + [Biy1 — Beya] = 0, (19)
2y + 3B 4 370 + B4 — v — 20171 — 20474 = 0, (20)
271 + [BiBs + v1ve — 20074 — 2a4v1] = 0. (21)

The first and fourth equations of this group give
Tu = v + (v* — 1) = 0. (22)
The substitution
v = log o, o = (BC), (23)
leads to the wave equation

011 — 04 = O, (24)
which has the solution

o = flar + x4) + glar — x4), (25)
where f and g are arbitrary functions. Eq. (18) reduces to
o — aus + (8% — B2 + v — 7)) = o. (18a)

Equation (17) then shows that vy cannot vanish everywhere.

We must now see whether there exist undulatory processes
for which v does not vanish. We note that such an undula-
tory process is represented, in the first approximation, by an
undulatory 8, that is by a B-function which, so far as its
dependence on x; and also its dependence on x4 is concerned,
possesses maxima and minima; we must expect this also for
a rigorous solution. We know about v that ¢r = ¢ satisfies
the wave equation (24) and therefore takes the form (25).
From this, however, the undulatory nature of this quantity
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does not necessarily follow. We shall in fact show that vy
can have no minima.

Such a minimum would imply that the functions f and g
in (25) have minima. At a point (x;, x;) where this were the
case we should have v, = v4 =0, v31 =0, vyu =0. But
by (17) and (20) this is impossible. Therefore v has no
minima, that is it is not undulatory but behaves, at least in a
region of space arbitrarily extended in one direction, mono-
tonically. We shall now consider such a region of space.

It is useful to see what sort of transformations of x; and x4
leave our system of equations (14) invariant. For this
invariance it is necessary and sufficient that the transforma-
tion satisfy the equations

8z, _ ot
dx1  Oxs

1 4 (26)
om _ oz,
(99C4 axl’

Thus we may arbitrarily choose #;(xi, x:) to satisfy the
equation
%%, 0%
6x12 (9.’)(2;2

=0 (26a)

and then (26) will determine the corresponding Z,. Since e7 is .
invariant under this transformation and also satisfies the wave
equation, there exists a transformation where %, is respectively
equal or proportional to er. In the new codrdinate system we
have

e = ax;

or v = log a + log x,. (27)

If we insert this expression for vy in (17)—(27) the equations
reduce to the equivalent system

B — Bu + %B 1= 0, (28)

1 2 a1 '
ar = 3x:1(B + B4?) 2%, (29)
and oy = %18184. (30)
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Equation (28) is the equation for cylindrical waves in a three-
dimensional space, if x; denotes the distance from the axis
of rotation. The equations (29) and (30) determine, for
given 8, the function « up to an (arbitrary) additive constant,
while, by (27), v is already determined.

In order that the waves may be regarded as waves in a
euclidean space these equations must be satisfied by the
euclidean space when the field is independent of x,. This
field is represented by

4 =1; B =1; C = x%

if we denote the angle about the axis of rotation by x;. These
relations correspond to

a = 0, 8 = — log x3, v = log xy,

and from this we see that the equations (27)—(30) are in fact
satisfied.

We have still to investigate whether stationary waves
exist, that is waves which are purely periodic in the time.

For B it is at once clear that such solutions exist. Al-
though it is not essential, we shall now consider the case where
the variation of 8 with time is sinusoidal. Here g8 has the
form

6 = X() + X1 sin WXy + X2 COS wXy,

where X,, X, X, are functions of x; alone. From (30) it then
follows that « is periodic if and only if the integral

f B1Bsdxs

taken over a whole number of periods vanishes.

In the case of a stationary oscillation, which is represented
by
B = Xo + X1 sin wxy,

this condition is actually fulfilled since
_/'6164dx4 = f(Xo’ + X1, SiI’l wx4)wX1 COS wx4dx4 = 0.

On the other hand, in the general case, which includes the case
of progressive waves, we obtain for this integral the value

%(Xngl - XQXll)(J)T,
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where T is the interval of time over which the integral is
taken. This does not vanish, in general. At distances x,
from %, = o great compared with the wave-lengths, a pro-
gressive wave can be represented with good approximation in
a domain containing many waves by

B = Xo+ asin w(x, — x1),

where @ is a constant (which, to be sure, is a substitute for a
function depending weakly on x;). In this case X; = a cos wx,
Xs = — a sin wxy, so that the integral can be (approximately)
represented by — }aw?T, and thus cannot vanish and always
has the same sign. Progressive waves therefore produce a
secular change in the metric. o

This is related to the fact that the waves transport energy,
which is bound up with a systematic change in time of a
gravitating mass localized in the axis x = o.

Note.—The second part of this paper was considerably altered by me after
the departure of Mr. Rosen for Russia since we had originally interpreted our
formula results erroneously. I wish to thank my colleague Professor Robertson
for his friendly assistance in the clarification of the original error. 1 thank also

Mr. Hoffmann for kind assistance in translation.
A. EINSTEIN.



